Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Videos
Videos
Thesis submission
Thesis submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Contact us
Contact us
ON THE NUMERICAL EVALUATION OF AN OSCILLATING INFINITE SERIES-III
Date
1990-01-01
Author
Tezer, Münevver
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
6
views
0
downloads
Cite This
An oscillating infinite series involving product of Bessel function J o(x) and an oscillating infinite series involving trigonometric function sin(x) were evaluated and computed numerically in [1] and [2] respectively. In this paper, an oscillating infinite series involving product of exponential, Bessel and trigonometric functions is evaluated. The series is transformed first into the sum of two infinite integrals by using contour integration and then the infinite integral with oscillating integrand is transformed through some identities into a finite integral containing modified Bessel function K 1(x). Finally, theset two integrals are evaluated numerically without any computational difficulties at all.
Subject Keywords
Computational Theory and Mathematics
,
Applied Mathematics
,
Computer Science Applications
URI
https://hdl.handle.net/11511/40842
Journal
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS
DOI
https://doi.org/10.1080/00207169008803898
Collections
Department of Mathematics, Article
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Tezer, “ON THE NUMERICAL EVALUATION OF AN OSCILLATING INFINITE SERIES-III,”
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS
, vol. 35, pp. 175–183, 1990, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40842.