Bandwidth Enhancement of Small Square Monopole Antenna Using Self-Complementary Structure for Microwave Imaging System Applications

2015-12-01
Ojaroudi, Mohammad
Aydın Çivi, Hatice Özlem
A novel printed monopole antenna for ultra-wideband (UWB) applications is designed based on self-complementary structure as a matching network. The proposed antenna consists of a square radiating patch and a self-complementary structure located next to feed line, which provides a wide usable fractional bandwidth of more than 100% (3.04-11.43 GHz). Self-complementary matching network is created, by cutting two rectangular ring slots on the ground plane and by inserting two rectangular rings coupled elements in the top layer; hence, additional resonances are excited and much wider impedance bandwidth can be produced. The designed antenna has a small size of 14x22 mm(2), about 0.15 lambda x0.25 lambda at 4.3 GHz. It is shown that simulated and measured results agree well with each other and demonstrate the usefulness of the proposed antenna for UWB applications. The proposed antenna exhibits almost omni-directional radiation patterns with low cross-polarization levels and provides an acceptable gain over whole band.
APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL

Suggestions

Beam Switching Reflectarray Monolithically Integrated With RF MEMS Switches
Bayraktar, Omer; Aydın Çivi, Hatice Özlem; Akın, Tayfun (2012-02-01)
A reflectarray antenna monolithically integrated with 90 RF MEMS switches has been designed and fabricated to achieve switching of the main beam. Aperture coupled microstrip patch antenna (ACMPA) elements are used to form a 10 x 10 element reconfigurable reflectarray antenna operating at 26.5 GHz. The change in the progressive phase shift between the elements is obtained by adjusting the length of the open ended transmission lines in the elements with the RF MEMS switches. The reconfigurable reflectarray is...
Frequency tunable microstrip patch antenna using RF MEMS technology
Erdıl, Emre; Topallı, Kagan; Unlu, Mehmet; Aydın Çivi, Hatice Özlem; Akın, Tayfun (2007-04-01)
A novel reconfigurable microstrip patch antenna is presented that is monolithically integrated with RF microelectromechanical systems (MEMS) capacitors for tuning the resonant frequency. Reconfigurability of the operating frequency of the microstrip patch antenna is achieved by loading it with a coplanar waveguide (CPW) stub on which variable MEMS capacitors are placed periodically. MEMS capacitors are implemented with surface micromachining technology, where a 1-mu m thick aluminum structural layer is plac...
Beam Steerable Traveling Wave Meander Line Antenna Using Varactor Diode for X-Band Applications
Gokalp, Nihan; Aydın Çivi, Hatice Özlem (2008-07-11)
This paper presents a novel beam steerable meander line antenna with varactor diode for X-band applications. Beam steering has been achieved by loading the arms of the meander line antenna with varactor diodes. The capacitances of the varactor diodes have been controlled by DC bias voltage. Instead of varactor diodes, RF-MEMS variable capacitances can be used to scan the beam. Since the insertion loss of MEMS capacitances are small compared to loss of varactor diodes, use of MEMS capacitors will increase th...
Wideband omnidirectional and sector coverage antenna arrays for base stations
Alatan, Lale (2018-01-01)
By using parallel strip line fed printed dipole antennas as array elements, an omnidirectional antenna array and a wide angle sector coverage array operating in octave band are designed. A maximum deviation of ±1.25 dB from the omnidirectional pattern is achieved for the omnidirectional array, and the average gain of the antenna was measured as being 5 dB in the 1.35–2.7GHz band. For the sector coverage array, a special reflector design is utilized to maintain a half power beam width of around 115◦ with a s...
Design of a Re-configurable dual frequency microstrip antenna with integrated RF MEMS switches
Onat, Sinon; Ünlü, Mehmet; Alatan, Lale; Demir, Şimşek; Akın, Tayfun (2005-07-08)
The complete design of a re-configurable dual frequency antenna structure, including its integrated RF MEMS switches and their actuation lines together with a CPW feed, is introduced. The number of switches used in the inset is decreased compared to the hybrid design we presented previously (Onat, S. et al., IEEE Int. Antennas and Propag. Symp., vol.2, p.1812-15, 2004). Instead of utilizing available RF MEMS switches, new switches suitable for this application are designed. Two different switch configuratio...
Citation Formats
M. Ojaroudi and H. Ö. Aydın Çivi, “Bandwidth Enhancement of Small Square Monopole Antenna Using Self-Complementary Structure for Microwave Imaging System Applications,” APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, pp. 1360–1365, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/53491.