Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Refining the progressive multiple sequence alignment score using genetic algorithms
Date
2006-01-01
Author
Ergezer, Halit
Leblebicioğlu, Mehmet Kemal
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
0
views
0
downloads
Given a set of N (N > 2) sequences, the Multiple Sequence Alignment (MSA) problem is to align these N sequences, possibly with gaps, that bring out the best score due to a given scoring criterion between characters. Multiple sequence alignment is one of the basic tools for interpreting the information obtained from bioinformatics studies. Dynamic Programming (DP) gives the optimal alignment of the two sequences for the given scoring scheme. But, in the case of multiple sequence alignment it requires enormous time and space to obtain the optimal alignment. The time and space requirement increases exponentially with the number of sequences. There are two basic classes of solutions except the DP method: progressive methods and iterative methods. In this study, we try to refine the alignment score obtained by using the progressive method due to given scoring criterion by using an iterative method. As an iterative method genetic algorithm (GA) has been used. The sum-of-pairs (SP) scoring system is used as our target of optimization. There are fifteen operators defined to refine the alignment quality by combining and mutating the alignments in the alignment population. The results show that the novel operators, sliding-window, local-alignment, which have not been used up to now, increase the score of the progressive alignment by amount of % 2.
Subject Keywords
Dynamic program
,
Iterative method
,
Multiple sequence alignment
,
Pairwise alignment
,
Alignment score
URI
https://hdl.handle.net/11511/55007
Journal
ARTIFICIAL INTELLIGENCE AND NEURAL NETWORKS
Collections
Department of Electrical and Electronics Engineering, Article