Scanning electron microscopic studies of porous carbon electrodes used in alkaline fuel cells

2003-05-01
Yazaydin, AO
Eroğlu, İnci
Han, E
Turker, L
Multilayer, polytetrafluoroethylene (PTFE)-bonded gas diffusion-type electrodes were prepared by the rolling method. Changing the electrode structure and manufacturing method improved alkaline fuel cell performance. Activated carbon or carbon black was used as the support material, with platinum as a catalyst and nickel screen as the backing material. Double-layer electrodes possessed both active and diffusion layers on the backing layer. However, the single-layer electrodes had only the active layer on the backing layer. The electrodes were prepared by using different PTFE contents and platinum loadings.
CHEMICAL ENGINEERING COMMUNICATIONS

Suggestions

Long term performance of an alkaline fuel cell with double layer electrodes
Eroğlu, İnci; Han, E; Turker, L (2000-06-15)
The improvement of an alkaline fuel cell (hydrogen-oxygen) performance by changing the electrode structure and manufacturing method has been achieved by employing multilayer, Teflon-bonded gas diffusion type electrodes which were prepared by the rolling method. Active carbon or carbon black was used as the support material whereas platinum as catalyst and nickel screen as the backing material. Double layer electrodes possessed the active and the diffusion layers on the backing layer. The electrode manufactu...
Analysis of pressure behaviors and flow regimes of naturally and hydraulically fractured unconventional gas reservoirs using multi-linear flow regimes approach
Al-Rbeawi, Salam (2017-09-01)
This paper targets the applicability of multi-linear flow regimes approach in gas reservoirs having multiple porous media: matrix, natural fractures, and hydraulic fractures. The approach attempts to understand pressure profiles and flow regimes developed in some of unconventional shale layers that have already been naturally fractured. In this paper, the main focus is given to fluid flow phenomenon from the matrix towards naturally induced fractures and from these fractures to the hydraulic fractures. Stud...
Numerical analysis of regenerative cooling in liquid propellant rocket engines
Ulaş, Abdullah (2013-01-01)
High combustion temperatures and long operation durations require the use of cooling techniques in liquid propellant rocket engines (LPRE). For high-pressure and high-thrust rocket engines, regenerative cooling is the most preferred cooling method. Traditionally, approximately square cross sectional cooling channels have been used. However, recent studies have shown that by increasing the coolant channel height-to-width aspect ratio and changing the cross sectional area in non-critical regions for heat flux...
Analytical investigation of wet combustion process for heavy oil recovery
Bağcı, Ali Suat (Informa UK Limited, 2004-12-01)
Analysis of combustion tube data produced from experiments performed under realistic reservoir conditions is currently the most valid method of investigating in-situ combustion process. In this study, the optimization of water-air ratio for B. Kozluca heavy crude oil, and the comparison of the performance of dry and wet forward combustion processes were studied. An analytical model was used to extend the laboratory results so that the oil production and steam zone volume can be estimated under field conditi...
Numerical investigation of a stand alone solar hydrogen energy system effects of PEFC degradation
Ender, Ozden; Tarı, İlker (null; 2015-08-12)
An existing stand-alone solar energy system producing hydrogen for energy storage is numerically investigated focusing on the degradation of Polymer Electrolyte Fuel Cell (PEFC) and its effects on the overall performance of the system. The system consists of Photovoltaic (PV) panels, polymer electrolyte based electrolyzers, H2 and O2 storage tanks and a commercial PEFC stack. A PEFC is numerically investigated both as new and as degraded (for about two years). Using a variety of observed degradation pattern...
Citation Formats
A. Yazaydin, İ. Eroğlu, E. Han, and L. Turker, “Scanning electron microscopic studies of porous carbon electrodes used in alkaline fuel cells,” CHEMICAL ENGINEERING COMMUNICATIONS, pp. 976–985, 2003, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/56600.