Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Communities & Collections
Communities & Collections
Numerical analysis of regenerative cooling in liquid propellant rocket engines
Date
2013-01-01
Author
Ulaş, Abdullah
Boysan, E.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
11
views
0
downloads
High combustion temperatures and long operation durations require the use of cooling techniques in liquid propellant rocket engines (LPRE). For high-pressure and high-thrust rocket engines, regenerative cooling is the most preferred cooling method. Traditionally, approximately square cross sectional cooling channels have been used. However, recent studies have shown that by increasing the coolant channel height-to-width aspect ratio and changing the cross sectional area in non-critical regions for heat flux, the rocket combustion chamber gas-side wall temperature can be reduced significantly without an increase in the coolant pressure drop. In this study, the regenerative cooling of a liquid propellant rocket engine has been numerically simulated. The engine has been modeled to operate on a LOX/kerosene mixture at a chamber pressure of 60 bar with 300 kN thrust and kerosene is considered as the coolant. A numerical investigation was performed to determine the effect of different aspect ratio and number of cooling channels on gas-side wall and coolant temperatures and pressure drop in cooling channels. (C) 2011 Elsevier Masson SAS. All rights reserved.
Subject Keywords
Kerosene
,
Liquid oxygen
,
Cooling channel
,
Cooling efficiency
,
Regenerative cooling
,
Liquid propellant rocket engines
URI
https://hdl.handle.net/11511/38839
Journal
AEROSPACE SCIENCE AND TECHNOLOGY
DOI
https://doi.org/10.1016/j.ast.2011.11.006
Collections
Department of Mechanical Engineering, Article