Numerical analysis of regenerative cooling in liquid propellant rocket engines

2013-01-01
High combustion temperatures and long operation durations require the use of cooling techniques in liquid propellant rocket engines (LPRE). For high-pressure and high-thrust rocket engines, regenerative cooling is the most preferred cooling method. Traditionally, approximately square cross sectional cooling channels have been used. However, recent studies have shown that by increasing the coolant channel height-to-width aspect ratio and changing the cross sectional area in non-critical regions for heat flux, the rocket combustion chamber gas-side wall temperature can be reduced significantly without an increase in the coolant pressure drop. In this study, the regenerative cooling of a liquid propellant rocket engine has been numerically simulated. The engine has been modeled to operate on a LOX/kerosene mixture at a chamber pressure of 60 bar with 300 kN thrust and kerosene is considered as the coolant. A numerical investigation was performed to determine the effect of different aspect ratio and number of cooling channels on gas-side wall and coolant temperatures and pressure drop in cooling channels. (C) 2011 Elsevier Masson SAS. All rights reserved.
AEROSPACE SCIENCE AND TECHNOLOGY

Suggestions

Comparison of different aspect ratio cooling channel designs for a liquid propellant rocket engine
Boysan, M. E.; Ulaş, Abdullah; Toker, K. A.; Seckin, B. (2007-06-16)
High combustion temperatures and long operation durations require the use of cooling techniques in liquid propellant rocket engines. For high-pressure and high-thrust rocket engines with long operation times, regenerative cooling is the most preferred cooling method. In regenerative cooling, a coolant flows through passages formed either by constructing the chamber liner from tubes or by milling channels in a solid liner. Traditionally, approximately square cross sectional channels have been used. However, ...
Analysis of regenerative cooling ın liquid propellant rocket engines
Boysan, Mustafa Emre; Ulaş, Abdullah; Department of Mechanical Engineering (2008)
High combustion temperatures and long operation durations require the use of cooling techniques in liquid propellant rocket engines. For high-pressure and high-thrust rocket engines, regenerative cooling is the most preferred cooling method. In regenerative cooling, a coolant flows through passages formed either by constructing the chamber liner from tubes or by milling channels in a solid liner. Traditionally, approximately square cross sectional channels have been used. However, recent studies have shown ...
Experimental analysis on the measurement of ballistic properties of solid propellants
Cuerdaneli, S.; Ak, M. A.; Ulaş, Abdullah (2007-06-16)
Ballistic properties of solid propellants play an important role in the performance of the solid propellant rocket motors. Therefore, ballistic properties of a likely propellant should be known and provided to the design engineers. In this study, a specific AP/HTPB composite solid propellant (SCP) was examined to obtain steady-state linear burning rates as a function of pressure and propellant initial temperature, temperature sensitivity, and pressure deflagration limit (PDL). In some tests micro-thermocoup...
Passive flow control in liquid-propellant rocket engines with cavitating venturi
Ulaş, Abdullah (Elsevier BV, 2006-04-01)
In a companion liquid rocket engine development project, due to the overall weight constraint of the propulsion system, a cavitating venturi is selected to control the liquid fuel and liquid oxidizer mass flow rates. Two cavitating venturis, one for the fuel and the other for the oxidizer, are designed to deliver the desired mass flow rates for a specified operating inlet pressure, temperature, and inlet cross-sectional area. The converging and diverging angles of the venturis are selected from the literatu...
Application of ultrasonic burning rate measurement method on closed bombs
Mumcu, Berkan; Kurtuluş, Dilek Funda; Arkun, Uğur; Department of Aerospace Engineering (2013)
In this thesis study, detailed information about solid rocket motors and ultrasonic burning rate measurement method is given. An experimental setup is prepared for applying the ultrasonic burning rate measurement method. Before performing the burning tests, some pre-tests are performed for affirming the ultrasonic sensor and obtaining some experimental coefficients. Two different types of propellants, which do not include aluminum, are produced for the burning tests. The first type of the propellants has tw...
Citation Formats
A. Ulaş, “Numerical analysis of regenerative cooling in liquid propellant rocket engines,” AEROSPACE SCIENCE AND TECHNOLOGY, pp. 187–197, 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/38839.