Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Endmember Signature Based Detection of Flammable Gases in LWIR Hyperspectral Images
Date
2015-04-21
Author
Omruuzun, Fatih
Çetin, Yasemin
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
5
views
0
downloads
Segmentation and identification of compounds or materials existing in a scene is a crucial process. Hyperspectral sensors operating in different regions of the electromagnetic spectrum are able to quantify spectral characteristics of materials in different states. Due to the fact that some chemical compounds in gas state have insignificant light reflectance characteristics in visible region of the spectrum, imaging sensors operating in infrared regions are needed to sense energy absorbency characteristics of these compositions. The present study proposes a novel method for detection of flammable gases in long-wave infrared hyperspectral images. Proposed method begins with Black-Body radiation curve compensation. Since a priori information regarding the compounds in the scene is not always available, endmember spectral signatures are extracted with VCA hyperspectral unmixing algorithm. Afterwards, endmember signatures are matched with infrared energy absorbance signature of the target gas obtained from NIST (National Institute of Standards and Technology) Material Measurement Laboratory. Finally, concentration of target signature at each image pixel is detected by means of endmember abundance maps. The performance of the approach is compared with that of similarity measure based gas detection methods. It is observed that the proposed technique removes the need for an external threshold setting while providing better resolvability of the gasses.
Subject Keywords
LWIR hyperspectral imaging
,
Gas detection
,
Hyperspectral unmixing
URI
https://hdl.handle.net/11511/57527
DOI
https://doi.org/10.1117/12.2182060
Collections
Graduate School of Informatics, Conference / Seminar