Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
When a lattice homomorphism is a Riesz homomorphism
Date
2006-01-01
Author
Ercan, Z.
Wickstead, A. W.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
114
views
0
downloads
Cite This
Let E and F be uniformly complete vector lattices with disjoint complete systems (u(i))(i is an element of I) and (v(i))(i is an element of I) of projection elements of E and F respectively. In this paper we prove that if T is a lattice homomorphism from E into F with T(lambda u(i)) = lambda v(i) for each lambda is an element of R and i is an element of I then T is linear. This generalizes the main results of [4] and [5]. (C) 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Subject Keywords
General Mathematics
URI
https://hdl.handle.net/11511/64740
Journal
MATHEMATISCHE NACHRICHTEN
DOI
https://doi.org/10.1002/mana.200410408
Collections
Department of Mathematics, Article
Suggestions
OpenMETU
Core
On a Fitting length conjecture without the coprimeness condition
Ercan, Gülin (Springer Science and Business Media LLC, 2012-08-01)
Let A be a finite nilpotent group acting fixed point freely by automorphisms on the finite solvable group G. It is conjectured that the Fitting length of G is bounded by the number of primes dividing the order of A, counted with multiplicities. The main result of this paper shows that the conjecture is true in the case where A is cyclic of order p (n) q, for prime numbers p and q coprime to 6 and G has abelian Sylow 2-subgroups.
The existence of a factorized unbounded operator between Frechet spaces
Kizgut, Ersin; Yurdakul, Murat (World Scientific Pub Co Pte Lt, 2020-02-01)
For locally convex spaces E and F, the continuous linear map T : E -> F is called bounded if there is a zero neighborhood U of E such that T(U) is bounded in F. Our main result is that the existence of an unbounded operator T between Frechet spaces E and F which factors through a third Frechet space G ends up with the fact that the triple (E, G, F) has an infinite dimensional closed common nuclear Kothe subspace, provided that F has the property (y).
Operators commuting with mixing sequences
Ha, MD (Duke University Press; 1999-09-01)
Let (X, F, mu) be a probability space and let L-2(X, 0) be the collection of all f is an element of L-2(X) with zero integrals. A collection A of linear operators on L-2(X) is said to satisfy the Gaussian-distribution property (G.D.P.) if L-2(X, 0) is invariant under A and there exists a constant C < infinity such that the following condition holds:
On entire rational maps of real surfaces
Ozan, Yıldıray (The Korean Mathematical Society, 2002-01-01)
In this paper, we define for a component X-0 of a nonsingular compact real algebraic surface X the complex genus of X-0, denoted by g(C)(X-0), and use this to prove the nonexistence of nonzero degree entire rational maps f : X-0 --> Y provided that g(C)(Y) > g(C)(X-0), analogously to the topological category. We construct connected real surfaces of arbitrary topological genus with zero complex genus.
ON STEIN MANIFOLDS M FOR WHICH O(M) IS ISOMORPHIC TO O(DELTA-N) AS FRECHET SPACES
Aytuna, Aydın (Springer Science and Business Media LLC, 1988-9)
We give a characterization of Stein manifolds M for which the space of analytic functions,O(M), is isomorphic as Fréchet spaces to the space of analytic functions on a polydisc interms of the existence of a plurisubharmonic function on M with certain properties. We discuss some corollaries of this result and give some examples.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Z. Ercan and A. W. Wickstead, “When a lattice homomorphism is a Riesz homomorphism,”
MATHEMATISCHE NACHRICHTEN
, pp. 1024–1027, 2006, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/64740.