Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
ON STEIN MANIFOLDS M FOR WHICH O(M) IS ISOMORPHIC TO O(DELTA-N) AS FRECHET SPACES
Date
1988-9
Author
Aytuna, Aydın
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
43
views
0
downloads
Cite This
We give a characterization of Stein manifolds M for which the space of analytic functions,O(M), is isomorphic as Fréchet spaces to the space of analytic functions on a polydisc interms of the existence of a plurisubharmonic function on M with certain properties. We discuss some corollaries of this result and give some examples.
Subject Keywords
General Mathematics
,
Mathematics
URI
https://hdl.handle.net/11511/52024
Journal
Manuscripta Mathematica
DOI
https://doi.org/10.1007/bf01246835
Collections
Department of Mathematics, Article
Suggestions
OpenMETU
Core
On entire rational maps of real surfaces
Ozan, Yıldıray (The Korean Mathematical Society, 2002-01-01)
In this paper, we define for a component X-0 of a nonsingular compact real algebraic surface X the complex genus of X-0, denoted by g(C)(X-0), and use this to prove the nonexistence of nonzero degree entire rational maps f : X-0 --> Y provided that g(C)(Y) > g(C)(X-0), analogously to the topological category. We construct connected real surfaces of arbitrary topological genus with zero complex genus.
On the sequential order continuity of the C(K)-space
Ercan, Z.; Onal, S. (Springer Science and Business Media LLC, 2007-03-01)
As shown in [1], for each compact Hausdorff space K without isolated points, there exists a compact Hausdorff P'-space X but not an F-space such that C(K) is isometrically Riesz isomorphic to a Riesz subspace of C(X). The proof is technical and depends heavily on some representation theorems. In this paper we give a simple and direct proof without any assumptions on isolated points. Some generalizations of these results are mentioned.
On a Fitting length conjecture without the coprimeness condition
Ercan, Gülin (Springer Science and Business Media LLC, 2012-08-01)
Let A be a finite nilpotent group acting fixed point freely by automorphisms on the finite solvable group G. It is conjectured that the Fitting length of G is bounded by the number of primes dividing the order of A, counted with multiplicities. The main result of this paper shows that the conjecture is true in the case where A is cyclic of order p (n) q, for prime numbers p and q coprime to 6 and G has abelian Sylow 2-subgroups.
Operators commuting with mixing sequences
Ha, MD (Duke University Press; 1999-09-01)
Let (X, F, mu) be a probability space and let L-2(X, 0) be the collection of all f is an element of L-2(X) with zero integrals. A collection A of linear operators on L-2(X) is said to satisfy the Gaussian-distribution property (G.D.P.) if L-2(X, 0) is invariant under A and there exists a constant C < infinity such that the following condition holds:
A classification of equivariant principal bundles over nonsingular toric varieties
Biswas, Indranil; Dey, Arijit; Poddar, Mainak (World Scientific Pub Co Pte Lt, 2016-12-01)
We classify holomorphic as well as algebraic torus equivariant principal G-bundles over a nonsingular toric variety X, where G is a complex linear algebraic group. It is shown that any such bundle over an affine, nonsingular toric variety admits a trivialization in equivariant sense. We also obtain some splitting results.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Aytuna, “ON STEIN MANIFOLDS M FOR WHICH O(M) IS ISOMORPHIC TO O(DELTA-N) AS FRECHET SPACES,”
Manuscripta Mathematica
, pp. 297–315, 1988, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/52024.