SU(2) symmetry and conservation of helicity for a Dirac particle in a static magnetic field at first order

Shikakhwa, M. S.
Albaid, A.
We investigate the spin dynamics and the conservation of helicity in the first order S-matrix of a Dirac particle in any static magnetic field. We express the dynamical quantities using a coordinate system defined by the three mutually orthogonal vectors; the total momentum k = pf + pi, the momentum transfer q = pf-pi, and 1 = k x q. We show that this leads to an alternative symmetric description of the conservation of helicity in a static magnetic field at first order. In particular, we show that helicity conservation in the transition can be viewed as the invariance of the component of the spin along k and the flipping of its component along q, just as what happens to the momentum vector of a ball bouncing off a wall. We also derive a "plug and play" formula for the transition matrix element where the only reference to the specific field configuration, and the incident and outgoing momenta is through the kinematical factors multiplying a general matrix element that is independent of the specific vector potential present.


Approximate Solutions of Dirac Equation with Hyperbolic-Type Potential
Arda, Altug; Sever, Ramazan (2015-09-01)
The energy eigenvalues of a Dirac particle for the hyperbolic-type potential field have been computed approximately. It is obtained a transcendental function of energy, F(E), by writing in terms of confluent Heun functions. The numerical values of energy are then obtained by fixing the zeros on "E-axis" for both complex functions Re[F(E)] and Im[F(E)].
MUSTAFA, O; Sever, Ramazan (1991-10-01)
The shifted 1/N expansion method has been extended to solve the Klein-Gordon equation with both scalar and vector potentials. The calculations are carried out to the third-order correction in the energy series. The analytical results are applied to a linear scalar potential to obtain the relativistic energy eigenvalues. Our numerical results are compared with those obtained by Gunion and Li [Phys. Rev. D 12, 3583 (1975)].
Displaceability of Certain Constant Sectional Curvature Lagrangian Submanifolds
Şirikçi, Nil İpek (Springer Science and Business Media LLC, 2020-10-01)
We present an alternative proof of a nonexistence result for displaceable constant sectional curvature Lagrangian submanifolds under certain assumptions on the Lagrangian submanifold and on the ambient symplectically aspherical symplectic manifold. The proof utilizes an index relation relating the Maslov index, the Morse index and the Conley-Zehnder index for a periodic orbit of the flow of a specific Hamiltonian function, a result on this orbit's Conley-Zehnder index and another result on the Morse indices...
MFIE-Based Formulation Using Double-Layer Modeling for Perfectly Conducting Objects
Guler, Sadri; İbili, Hande; Ergül, Özgür Salih (2019-01-01)
We present resonance-free solutions of scattering problems involving closed conductors using the magnetic field integral equation (MFIE). In the literature, MFIE is often combined with the electric-field integral equation (EFIE) to avoid internal resonances that can significantly contaminate solutions especially when scatterers become electrically large. The resulting combined-field integral equation (CFIE), however, possesses the disadvantages of EFIE, e.g., ill-conditioning for dense discretizations. We s...
Supersymmetric solutions of PT-/non-PT-symmetric and non-Hermitian screened Coulomb potential via Hamiltonian hierarchy inspired variational method
Faridfathi, Gholamreza; Sever, Ramazan (Springer Science and Business Media LLC, 2007-10-01)
The supersymmetric solutions of PT -symmetric and Hermitian/non-Hermitian forms of quantum systems are obtained by solving the Schrodinger equation for the Exponential-Cosine Screened Coulomb potential. The Hamiltonian hierarchy inspired variational method is used to obtain the approximate energy eigenvalues and corresponding wave functions.
Citation Formats
M. S. Shikakhwa and A. Albaid, “SU(2) symmetry and conservation of helicity for a Dirac particle in a static magnetic field at first order,” REVISTA MEXICANA DE FISICA, pp. 474–480, 2017, Accessed: 00, 2020. [Online]. Available: