Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Displaceability of Certain Constant Sectional Curvature Lagrangian Submanifolds
Date
2020-10-01
Author
Şirikçi, Nil İpek
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
368
views
0
downloads
Cite This
We present an alternative proof of a nonexistence result for displaceable constant sectional curvature Lagrangian submanifolds under certain assumptions on the Lagrangian submanifold and on the ambient symplectically aspherical symplectic manifold. The proof utilizes an index relation relating the Maslov index, the Morse index and the Conley-Zehnder index for a periodic orbit of the flow of a specific Hamiltonian function, a result on this orbit's Conley-Zehnder index and another result on the Morse indices for constant sectional curvature manifolds the utilization of which to prove nondisplaceability is new.
Subject Keywords
Applied Mathematics
,
Mathematics (miscellaneous)
URI
https://hdl.handle.net/11511/57974
Journal
RESULTS IN MATHEMATICS
DOI
https://doi.org/10.1007/s00025-020-01279-0
Collections
Department of Economics, Article
Suggestions
OpenMETU
Core
Hyperbolic conservation laws on manifolds. An error estimate for finite volume schemes
Lefloch, Philippe G.; Okutmuştur, Baver; Neves, Wladimir (Springer Science and Business Media LLC, 2009-07-01)
Following Ben-Artzi and LeFloch, we consider nonlinear hyperbolic conservation laws posed on a Riemannian manifold, and we establish an L (1)-error estimate for a class of finite volume schemes allowing for the approximation of entropy solutions to the initial value problem. The error in the L (1) norm is of order h (1/4) at most, where h represents the maximal diameter of elements in the family of geodesic triangulations. The proof relies on a suitable generalization of Cockburn, Coquel, and LeFloch's theo...
Legendrian realization in convex Lefschetz fibrations and convex stabilizations
Akbulut, Selman; Arıkan, Mehmet Fırat (Walter de Gruyter GmbH, 2015-05-01)
We show that, up to a Liouville homotopy and a deformation of compact convex Lefschetz fibrations on W, any Lagrangian submanifold with trivial first de Rham cohomology group, embedded on a (symplectic) page of the (induced) convex open book on partial derivative W, can be assumed to be Legendrian in partial derivative W with the induced contact structure. This can be thought as the extension of Giroux's Legendrian realization (which holds for contact open books) for the case of convex open books. We also s...
Concrete description of CD0(K)-spaces as C(X)-spaces and its applications
Ercan, Z (American Mathematical Society (AMS), 2004-01-01)
We prove that for a compact Hausdorff space K without isolated points, CD0(K) and C(K x {0, 1}) are isometrically Riesz isomorphic spaces under a certain topology on K x {0, 1}. Moreover, K is a closed subspace of K x {0, 1}. This provides concrete examples of compact Hausdorff spaces X such that the Dedekind completion of C(X) is B(S) (= the set of all bounded real-valued functions on S) since the Dedekind completion of CD0(K) is B(K) (CD0(K, E) and CDw (K, E) spaces as Banach lattices).
Error estimates for space-time discontinuous Galerkin formulation based on proper orthogonal decomposition
Akman, Tuğba (Informa UK Limited, 2017-01-01)
In this study, proper orthogonal decomposition (POD) method is applied to diffusion-convection-reaction equation, which is discretized using spacetime discontinuous Galerkin (dG) method. We provide estimates for POD truncation error in dG-energy norm, dG-elliptic projection, and spacetime projection. Using these new estimates, we analyze the error between the dG and the POD solution, and the error between the exact and the POD solution. Numerical results, which are consistent with theoretical convergence ra...
Piecewise polynomials with different smoothness degrees on polyhedral complexes
ALTINOK BHUPAL, SELMA; Sipahi, Neslihan Os (Informa UK Limited, 2019-05-01)
For a given d-dimensional polyhedral complex Delta and a given degree k, we consider the vector space of piecewise polynomial functions on Delta of degree at most k with a different smoothness condition on each pair of adjacent d-faces of Delta. This is a finite dimensional vector space. The fundamental problem in Approximation Theory is to compute the dimension of this vector space. It is known that the dimension is given by a polynomial for sufficiently large k via commutative algebra. By using the techni...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
N. İ. Şirikçi, “Displaceability of Certain Constant Sectional Curvature Lagrangian Submanifolds,”
RESULTS IN MATHEMATICS
, pp. 0–0, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/57974.