Strongly Unpredictable Oscillations of Hopfield-Type Neural Networks

Akhmet, Marat
Nugayeva, Zakhira
In this paper, unpredictable oscillations in Hopfield-type neural networks is under investigation. The motion strongly relates to Poincare chaos. Thus, the importance of the dynamics is indisputable for those problems of artificial intelligence, brain activity and robotics, which rely on chaos. Sufficient conditions for the existence and uniqueness of exponentially stable unpredictable solutions are determined. The oscillations continue the line of periodic and almost periodic motions, which already are verified as effective instruments of analysis and applications for image recognition, information processing and other areas of neuroscience. The concept of strongly unpredictable oscillations is a significant novelty of the present research, since the presence of chaos in each coordinate of the space state provides new opportunities in applications. Additionally to the theoretical analysis, we have provided strong simulation arguments, considering that all of the assumed conditions are fulfilled.


Recent results on Bayesian Cramér-Rao bounds for jump Markov systems
Fritsche, Carsten; Orguner, Umut; Svensson, Lennart; Gustafsson, Fredrik (2016-07-08)
In this paper, recent results on the evaluation of the Bayesian Cramer-Rao bound for jump Markov systems are presented. In particular, previous work is extended to jump Markov systems where the discrete mode variable enters into both the process and measurement equation, as well as where it enters exclusively into the measurement equation. Recursive approximations are derived with finite memory requirements as well as algorithms for checking the validity of these approximations are established. The tightnes...
Periodic solution for state-dependent impulsive shunting inhibitory CNNs with time-varying delays
Sayli, Mustafa; YILMAZ, ENES (2015-08-01)
In this paper, we consider existence and global exponential stability of periodic solution for state-dependent impulsive shunting inhibitory cellular neural networks with time-varying delays. By means of B-equivalence method, we reduce these state-dependent impulsive neural networks system to an equivalent fix time impulsive neural networks system. Further, by using Mawhin's continuation theorem of coincide degree theory and employing a suitable Lyapunov function some new sufficient conditions for existence...
Damage Detection in FRP Laminated Beams Using Neural Networks
Şahin, Melin (2002-07-10)
This paper presents a technique to predict the severity and the location of the damage in beam-like composite laminates by using modal parameters as input for an artificial neural network. A laminated cantilever beam is modelled using ANSYS 5.6© finite element software. Normal mode dynamic analyses have been performed for the first three natural modes of intact and damaged beams to find the modal parameters. Damage has been modelled as a local reduction in stiffness of the selected elements in the finite el...
Unpredictable Oscillations for Hopfield-Type Neural Networks with Delayed and Advanced Arguments
Akhmet, Marat; Tleubergenova, Madina; Nugayeva, Zakhira (2021-03-01)
This is the first time that the method for the investigation of unpredictable solutions of differential equations has been extended to unpredictable oscillations of neural networks with a generalized piecewise constant argument, which is delayed and advanced. The existence and exponential stability of the unique unpredictable oscillation are proven. According to the theory, the presence of unpredictable oscillations is strong evidence for Poincare chaos. Consequently, the paper is a contribution to chaos ap...
Almost Periodic Solutions of Recurrent Neural Networks with State-Dependent and Structured Impulses
Akhmet, Marat; Erim, Gülbahar (2023-01-01)
The subject of the present paper is recurrent neural networks with variable impulsive moments. The impact activation functions are specified such that the structure for the jump equations are in full accordance with that one for the differential equation. The system studied in this paper covers the works done before, not only because the impacts have recurrent form, but also impulses are not state-dependent. The conditions for existence and uniqueness of asymptotically stable discontinuous almost periodic s...
Citation Formats
M. Akhmet and Z. Nugayeva, “Strongly Unpredictable Oscillations of Hopfield-Type Neural Networks,” MATHEMATICS, pp. 0–0, 2020, Accessed: 00, 2020. [Online]. Available: