Recent results on Bayesian Cramér-Rao bounds for jump Markov systems

Fritsche, Carsten
Orguner, Umut
Svensson, Lennart
Gustafsson, Fredrik
In this paper, recent results on the evaluation of the Bayesian Cramer-Rao bound for jump Markov systems are presented. In particular, previous work is extended to jump Markov systems where the discrete mode variable enters into both the process and measurement equation, as well as where it enters exclusively into the measurement equation. Recursive approximations are derived with finite memory requirements as well as algorithms for checking the validity of these approximations are established. The tightness of the bound and the validity of its approximation is investigated on a couple of examples.


Functional Mesh Model with Temporal Measurements for Brain Decoding
Onal, Itir; Ozay, Mete; Yarman Vural, Fatoş Tunay (2015-08-29)
We propose a method called Functional Mesh Model with Temporal Measurements (FMM-TM) to estimate a functional relationship among voxels using temporal data, and employ these relationships for brain decoding. For each sample, we measure Blood Oxygenation Level Dependent (BOLD) responses from each voxel, and construct a functional mesh around each voxel (called seed voxel) with its nearest neighbors selected using distance metrics namely Pearson correlation, cosine similarity and Euclidean distance. Then, we ...
Bobrovsky-Zakai Bound for Filtering, Prediction and Smoothing of Nonlinear Dynamic Systems
Fritsche, Carsten; Orguner, Umut; Gustafsson, Fredrik (2018-07-13)
In this paper, recursive Bobrovsky-Zakai bounds for filtering, prediction and smoothing of nonlinear dynamic systems are presented. The similarities and differences to an existing Bobrovsky-Zakai bound in the literature for the filtering case are highlighted. The tightness of the derived bounds are illustrated on a simple example where a linear system with non-Gaussian measurement likelihood is considered. The proposed bounds are also compared with the performance of some well-known filters/predictors/smoot...
Expectation propagation for state estimation with discrete-valued hidden random variables
Sarıtaş, Elif; Orguner, Umut; Department of Electrical and Electronics Engineering (2023-2-21)
In this thesis, the expectation propagation (EP) approach of Minka is considered for the estimation problems in dynamical systems with discrete hidden random variables where optimal posteriors are usually intractable. The concept of context adjustment is introduced to avoid/alleviate indefinite covariance problems encountered in standard EP implementations in a systematic way. Additionally, the moment projection (Mprojection) problem involving pseudo-Gaussian likelihoods as factors is solved to be used in t...
Systematic Analysis on the Optical Properties of Chiral Metamaterial Slab for Microwave Polarization Control
Comez, I.; KARAASLAN, MUHARREM; Dincer, F.; KARADAĞ, FATOŞ; Sabah, C. (2015-05-01)
Theoretical and numerical of investigation of the chiral slab exhibiting polarization rotation is presented in detail. The effects of the chirality, thickness of medium, dielectric constant, and incident angle are analyzed in order to display the characteristic features of the chiral slab both for TE and TM incident waves. The chiral slab then is realized by using a full wave EM simulation software in order to validate the numerical results in which the numerical and simulation results are in good agreement...
Stability analysis of recurrent neural networks with piecewise constant argument of generalized type
Akhmet, Marat; Yılmaz, Elanur (2010-09-01)
In this paper, we apply the method of Lyapunov functions for differential equations with piecewise constant argument of generalized type to a model of recurrent neural networks (RNNs). The model involves both advanced and delayed arguments. Sufficient conditions are obtained for global exponential stability of the equilibrium point. Examples with numerical simulations are presented to illustrate the results.
Citation Formats
C. Fritsche, U. Orguner, L. Svensson, and F. Gustafsson, “Recent results on Bayesian Cramér-Rao bounds for jump Markov systems,” 2016, Accessed: 00, 2020. [Online]. Available: