Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Low-power and area-efficient finite field arithmetic architecture based on irreducible all-one polynomials
Date
2020-9
Author
Mohaghegh, Shima
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
267
views
0
downloads
Cite This
This thesis presents a low-power and area-efficient finite field multiplier based on irreducible all-one polynomials (AOP). The proposed organization implements the AOP multiplication algorithm in three stages, which are reduction network, AND network (multiplication), and three input XOR tree (accumulation), while state-of-the-art implementations distribute reduction, multiplication and accumulation operations in a systolic array. The optimization reduces the overall number of sequential elements and provides lower pipeline latency compared to literature. This leads to the reduction of power dissipation and area for a system clock frequency. Both the previously reported and the proposed architectures have been implemented in Verilog for three different binary field sizes using TSMC 90 $nm$ standard cell library from Artisan Components, and have been synthesized with a target 1.2 GHz system clock frequency using the Cadence Genus Synthesis tool. The proposed architecture offers 14%, 30%, and 19% reduction in average leakage, dynamic power, and area, respectively, compared to the state-of-the-art. Thus, the proposed architecture is better suited for energy-efficient portable systems, including wireless sensors.
Subject Keywords
Galois Field Multiplier
,
Synthesis
,
Irreducible
,
Low-Power
,
Area-Efficient
,
All-One Polynomial (AOP)
,
Elliptic Curve Cryptography (ECC)
URI
https://hdl.handle.net/11511/69238
Collections
Northern Cyprus Campus, Thesis
Suggestions
OpenMETU
Core
Low-power and area-efficient finite field arithmeticarchitecture based on irreducible all-one polynomials
Mohaghegh, Shima; Muhtaroğlu, Ali; Kondo, Satoshi; Electrical and Electronics Engineering (2020-9)
This thesis presents a low-power and area-efficient finite field multiplier based onirreducible all-one polynomials (AOP). The proposed organization implements theAOP multiplication algorithm in three stages, which are reduction network, ANDnetwork (multiplication), and three input XOR tree (accumulation), while state-of-the-art implementations distribute reduction, multiplication and accumulation opera-tions in a systolic array. The optimization reduces the overall number of sequentialelements a...
Free storage basis conversion over extension field
Harold, Ndangang Yampa; Akyıldız, Ersan; Department of Cryptography (2014)
The representation of elements over finite fields play a great impact on the performance of finite field arithmetic. So if efficient representation of finite field elements exists and conversion between these representations is known, then it becomes easy to perform computation in a more efficient way. In this thesis, we shall provide a free storage basis conversion in the extension field F_(q^p) of F_q between Normal basis and Polynomial basis and vice versa. The particularity of this thesis is that, our t...
Algebraic geometric methods in studying splines
Sipahi Ös, Neslihan; Bhupal, Mohan Lal; Altınok Bhupal, Selma; Department of Mathematics (2013)
In this thesis, our main objects of interest are piecewise polynomial functions (splines). For a polyhedral complex $\Delta$ in $\mathbb{\R}^n$, $C^{r}(\Delta)$ denotes the set of piecewise polynomial functions defined on $\Delta$. Determining the dimension of the space of splines with polynomials having degree at most $k$, denoted by $C^r_k(\Delta)$, is an important problem, which has many applications. In this thesis, we first give an exposition on splines and introduce different algebraic geometric metho...
Calculations of the roots of classical orthogonal polynomials: an application to gaussian quadrature
Shaidolda, Gulnaz; Taşeli, Hasan; Department of Mathematics (2019)
This thesis focuses on classical orthogonal polynomials namely Jacobi, Laguerre and Hermite polynomials and a method to calculate the roots of these polynomials is constructed. The roots are expressed as the eigenvalues of a tridiagonal matrix whose coefficients depend on the recurrence formula for the classical orthogonal polynomials. These approximations of roots are used as method of computation of Gaussian quadratures. Then the discussion of the numerical results are then introduced to deduce the effici...
The number of irreducible polynomials over finite fields with vanishing trace and reciprocal trace
Çakıroğlu, Yağmur; Yayla, Oğuz; Yılmaz, Emrah Sercan (2022-08-01)
We present the formula for the number of monic irreducible polynomials of degree n over the finite field F-q where the coefficients of x(n)(-1) and x vanish for n >= 3. In particular, we give a relation between rational points of algebraic curves over finite fields and the number of elements a is an element of F-qn for which Trace(a) = 0 and Trace(a(-1)) = 0.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Mohaghegh, “Low-power and area-efficient finite field arithmetic architecture based on irreducible all-one polynomials,” M.S. - Master of Science, Middle East Technical University, 2020.