Monte Carlo Modelling of Structural Defects in Intermetallic Alloys

2010-11-11
Aykol, Muratahan
Mekhrabov, Amdulla
Akdeniz, Mahmut Vedat
Single-crystal diffuse scattering (SCDS) reveals detailed structural insights into materials. In particular, it is sensitive to two-body correlations, whereas traditional Bragg peak-based methods are sensitive to single-body correlations. This means that diffuse scattering is sensitive to ordering that persists for just a few unit cells: nanoscale order, sometimes referred to as “local structure”, which is often crucial for understanding a material and its function. Metals and alloys were early candidates for SCDS studies because of the availability of large single crystals. While great progress has been made in areas like ab initio modelling and molecular dynamics, a place remains for Monte Carlo modelling of model crystals because of its ability to model very large systems; important when correlations are relatively long (though still finite) in range. This paper briefly outlines, and gives examples of, some Monte Carlo methods appropriate for the modelling of SCDS from metallic compounds, and considers data collection as well as analysis. Even if the interest in the material is driven primarily by magnetism or transport behaviour, an understanding of the local structure can underpin such studies and give an indication of nanoscale inhomogeneity.
15-th International Metallurgy&Materials Congress – IMMC 2010

Suggestions

A Detailed Analysis for the Absorption Coefficient of Multilevel Uncooled Infrared Detectors
Küçük, Serhat; Akın, Tayfun (2011-04-29)
This paper introduces a detailed analysis on the calculation of the absorption coefficient of multilevel uncooled infrared detectors. The analysis is carried out considering a two-level 25 mu m pixel pitch infrared detector with a sandwich type resistor which is divided into sub-regions consisting of different stacks of layers. The absorption coefficients of these different sub-regions are calculated individually by using the cascaded transmission line model, including the main body, arms, and the regions w...
Two dimensional modeling of electromagnetic radiation and scattering by spectral element method
Mahariq, İbrahim; Tarman, Işık Hakan; Kuzuoğlu, Mustafa; Department of Engineering Sciences (2014)
In this thesis, the spectral element method is utilized in numerical modeling of two-dimensional, frequency-domain electromagnetic scattering and radiation problems. We perform domain truncation by the well-known perfectly matched layer (PML) and provide the corresponding formulation. The attenuation factor associated with the PML formulation is optimized so that the best accuracy is achieved for a wide range of Gauss- Legendre -Lobatto grids per wavelength. The optimality of the provided attenuation factor...
A Numerical Model for Investigating the Effect of Rough Surface Parameters on Radar Cross Section Statistics
Kuzuoğlu, Mustafa (2017-07-14)
Electromagnetic scattering from rough surfaces is modeled by combining the periodic finite element method and the transformation electromagnetics approach. The behavior of the radar cross section (RCS) at both specular and backscattering directions is analyzed as a function of rms height and correlation length with the help of Monte Carlo simulations. The concept of backscattering enhancement is illustrated, and some conclusions are drawn about the RCS statistics.
Computational modelling of carbon nanotube reinforced polymer composites
Zuberi, Muhammad Jibran Shahzad; Esat, Volkan; Electrical and Electronics Engineering (2014-7)
This thesis investigates the effects of chirality and size of single-walled carbon nanotubes (SWNTs) on the mechanical properties of both SWNTs and carbon nanotube reinforced epoxy composites (CNTRPs). First, a novel 3D beam element finite element model is developed based on equivalent-continuum mechanics approach and used for replacing C-C chemical bond for modelling SWNTs. The effects of diameter and chirality on the Young’s moduli, shear moduli, shear strains and Poisson’s ratios of SWNTs are studied. Fo...
A theoretical study of chemical doping and width effect on zigzag graphene nanoribbons
Pekoz, Rengin; Erkoç, Şakir (Elsevier BV, 2009-12-01)
The energetics and the electronic properties of nitrogen- and boron-doped graphene nanoribbons with zigzag edges have been investigated using density functional theory calculations. For the optimized geometry configurations, vibrational frequency analysis and wavefunction stability tests have been carried out. Different doping site optimizations for a model nanoribbon have been performed and formation energy values of these sites revealed that zigzag edgesite for both of the dopants were the most favorable ...
Citation Formats
M. Aykol, A. Mekhrabov, and M. V. Akdeniz, “Monte Carlo Modelling of Structural Defects in Intermetallic Alloys,” presented at the 15-th International Metallurgy&Materials Congress – IMMC 2010, İstanbul, Türkiye, 2010, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/71353.