Zeo type Titanosilicate ETS 10 Thin Films as a Humidity Sensor

2016-06-19

Suggestions

Zeolite A coated Zn1-XCuXO MOS sensors for NO gas detection
Galioglu, Sezin; Karaduman, Irmak; Corlu, Tugba; Akata Kurç, Burcu; YILDIRIM, MEMET ALİ; ATEŞ, AYTÜNÇ; Acar, Selim (2018-01-01)
In the current study, a novel and highly sensitive gas sensing material for the detection of NO gas was reported. Copper doped zinc oxide nanostructures (Zn1-xCuxO, where x = 0.25 steps) were grown as a semiconducting sensor material by using Successive Ionic Layer Adsorption and Reaction (SILAR) method. The structural, morphological and optical properties of nanostructures were investigated by X-Ray Diffractometer (XRD), Scanning Electron Microscope (SEM) and UV-visible spectrometer. NO gas sensing measure...
Zeolite confined copper(0) nanoclusters as cost-effective and reusable catalyst in hydrogen generation from the hydrolysis of ammonia-borane
Zahmakiran, Mehmet; Durap, Feyyaz; Özkar, Saim (2010-01-01)
Herein we report the development of a cost-effective nanocluster catalyst for the hydrolytic dehydrogenation of ammonia-borane which is considered to be one among the new hydrogen storage materials. Zeolite confined copper(0) nanoclusters were prepared by the ion-exchange of Cu2+ ions with the extra framework Na+ ions in zeolite-Y followed by reduction of the Cu2+ ions within the cavities of zeolite with sodium borohydride in aqueous solution and characterized by HR-TEM, XRD, XPS, SEM, EDX, ICP-OES, Raman s...
Zeolite framework stabilized rhodium(0) nanoclusters catalyst for the hydrolysis of ammonia-borane in air: Outstanding catalytic activity, reusability and lifetime
Zahmakiran, Mehmet; Özkar, Saim (2009-07-03)
Zeolite framework stabilized rhodium(0) nanoclusters; were prepared by a two steps procedure: incorporation of Rh3+ ions into the Zeolite-Y by ion-exchange followed by in situ reduction of Rh3+ ions during the catalytic hydrolysis of ammonia-borane. They are stable enough to be isolated as solid materials and characterized by HRTEM, XPS, XRD, SEM, EDX, and N-2 adsorption. These nanoclusters are isolable, bottleable, redispersible, and reusable as an active catalyst in the hydrolysis of ammonia-borane even a...
Zeolite confined palladium(0) nanoclusters as effective and reusable catalyst for hydrogen generation from the hydrolysis of ammonia-borane
Rakap, Murat; Özkar, Saim (2010-02-01)
Zeolite confined palladium(0) nanoclusters were prepared by a two step procedure: incorporation of Pd2+ ions into the zeolite-Y by ion-exchange followed by the reduction of Pd2+ ions in the supercages of zeolite-Y with sodium borohydride at room temperature. Zeolite confined palladium(0) nanoclusters are stable enough to be isolated as solid materials and characterized by ICP-OES, XRD, HRTEM, SEM, X-ray photoelectron spectroscopy and N-2 adsorption technique. These nanoclusters are isolable, redispersible a...
Zeolite-Confined Ruthenium(0) Nanoclusters Catalyst: Record Catalytic Activity, Reusability, and Lifetime in Hydrogen Generation from the Hydrolysis of Sodium Borohydride
Zahmakiran, Mehmet; Özkar, Saim (2009-03-03)
Sodium borohydride, NaBH4, has been considered the most attractive hydrogen-storage material for portable fuel cell applications,,is it provides a safe and practical means of producing hydrogen. In a recent communication (Zahmakiran, M.; Ozkar, S. Langmuir 2008, 24, 7065), we have reported a record total turnover number (TTON) of 103 200 mol H-2/mol Ru and turnover frequency (TOF) up to 33 000 mol H-2/mol Ru center dot h obtained by using intrazeolite ruthenium(0) nanoclusters in the hydrolysis of sodium bo...
Citation Formats
S. Galioglu, İ. Çam, and B. Akata Kurç, “Zeo type Titanosilicate ETS 10 Thin Films as a Humidity Sensor,” 2016, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/75116.