Zeolite-Confined Ruthenium(0) Nanoclusters Catalyst: Record Catalytic Activity, Reusability, and Lifetime in Hydrogen Generation from the Hydrolysis of Sodium Borohydride

2009-03-03
Zahmakiran, Mehmet
Özkar, Saim
Sodium borohydride, NaBH4, has been considered the most attractive hydrogen-storage material for portable fuel cell applications,,is it provides a safe and practical means of producing hydrogen. In a recent communication (Zahmakiran, M.; Ozkar, S. Langmuir 2008, 24, 7065), we have reported a record total turnover number (TTON) of 103 200 mol H-2/mol Ru and turnover frequency (TOF) up to 33 000 mol H-2/mol Ru center dot h obtained by using intrazeolite ruthenium(0) nanoclusters in the hydrolysis of sodium borohydride. Here we report full details of die kinetic studies on the intrazeolite ruthenium(0) nanoclusters catalyzed hydrolysis of sodium borohydride in both aqueous and basic solutions. Expectedly, the intrazeolite ruthenium(0) nanoclusters show unprecedented catalytic lifetime, TTON = 27 200 mol H-2/mol Ru, and TOF up to 4000 mot H-2/mol Ru center dot h in the hydrolysis of sodium borohydride in basic solution (5% wt NaOH) as well. More importantly, the intrazeolite ruthenium(0) nanoclusters are isolable, bottleable, redispersible, and yet catalytically active. They retain 76% or 61% of their initial catalytic activity at the fifth run with a complete release of hydrogen in aqueous and basic medium, respectively. The intrazeolite ruthenium(0) nanoclusters were isolated is black powder and characterized by using a combination of advanced analytical techniques including XRD, HRTEM, TEM-EDX, SFM, XPS, ICP-OES, and N-2 adsorption.
LANGMUIR

Suggestions

Zeolite framework stabilized nickel(0) nanoparticles: Active and long-lived catalyst for hydrogen generation from the hydrolysis of ammonia-borane and sodium borohydride
Zahmakiran, Mehmet; Ayvali, Tugce; Akbayrak, Serdar; Caliskan, Salim; Celik, Derya; Özkar, Saim (Elsevier BV, 2011-07-19)
Among the hydrogen storage materials, ammonia-borane and sodium borohydride appear to be promising candidates as they can release hydrogen on hydrolysis in aqueous solution under mild conditions. Here, we report the development of a cost-effective and highly active nickel(0) nanoparticles catalyst for the hydrolysis of ammonia-borane and sodium borohydride. Nickel(0) nanoparticles confined in zeolite framework were prepared by using our previously established procedure and characterized by ICP-OES, XRD, TEM...
Biosensors Based on Nano-Gold/Zeolite-Modified Ion Selective Field-Effect Transistors for Creatinine Detection
Kasap, Berna Ozansoy; Marchenko, Svitlana V.; Soldatkin, Oleksandr O.; Dzyadevych, Sergei V.; Akata Kurç, Burcu (2017-03-02)
The combination of advantages of using zeolites and gold nanoparticles were aimed to be used for the first time to improve the characteristic properties of ion selective field-effect transistor (ISFET)-based creatinine biosensors. The biosensors with covalently cross-linked creatinine deiminase using glutaraldehyde (GA) were used as a control group, and the effect of different types of zeolites on biosensor responses was investigated in detail by using silicalite, zeolite beta (BEA), nano-sized zeolite beta...
Copper(0) Nanoparticles Supported on Silica-Coated Cobalt Ferrite Magnetic Particles: Cost Effective Catalyst in the Hydrolysis of Ammonia-Borane with an Exceptional Reusability Performance
KAYA, MURAT; Zahmakıran, Mehmet; Özkar, Saim; Volkan, Mürvet (2012-08-01)
Herein we report the development of a new and cost-effective nanocomposite catalyst for the hydrolysis of ammonia-borane (NH3BH3), which is considered to be one of the most promising solid hydrogen carriers because of its high gravimetric hydrogen storage capacity (19.6% wt) and low molecular weight. The new catalyst system consisting of copper nanoparticles supported on magnetic SiO2/CoFe2O4 particles was reproducibly prepared by wet-impregnation of Cu(II) ions on SiO2/CoFe2O4 followed by in situ reduction...
Dihydrogen Phosphate Stabilized Ruthenium(0) Nanoparticles: Efficient Nanocatalyst for The Hydrolysis of Ammonia-Borane at Room Temperature
DURAP, FEYYAZ; Caliskan, Salim; Özkar, Saim; Karakas, Kadir; Zahmakıran, Mehmet (2015-07-01)
Intensive efforts have been devoted to the development of new materials for safe and efficient hydrogen storage. Among them, ammonia-borane appears to be a promising candidate due to its high gravimetric hydrogen storage capacity. Ammonia-borane can release hydrogen on hydrolysis in aqueous solution under mild conditions in the presence of a suitable catalyst. Herein, we report the synthesis of ruthenium(0) nanoparticles stabilized by dihydrogenphosphate anions with an average particle size of 2.9 +/- 0.9 n...
Magnetically Separable Rh-0/Co3O4 Nanocatalyst Provides over a Million Turnovers in Hydrogen Release from Ammonia Borane
Akbayrak, Serdar; Tonbul, Yalcin; Özkar, Saim (2020-03-16)
Cobalt(II,III) oxide nanopowders are used as supporting materials for rhodium(0) nanoparticles forming Rh-0/Co3O4 nanocatalysts, which can be prepared by impregnation and sodium borohydride reduction of Rh3+ ions on the surface of the oxide support. Magnetically separable Rh-0/Co3O4 nanoparticles are isolated from the reaction medium by an external magnet and characterized using various analytical techniques. Rh-0/Co3O4 nanoparticles are highly active and reusable catalysts with a long lifetime in hydrolyti...
Citation Formats
M. Zahmakiran and S. Özkar, “Zeolite-Confined Ruthenium(0) Nanoclusters Catalyst: Record Catalytic Activity, Reusability, and Lifetime in Hydrogen Generation from the Hydrolysis of Sodium Borohydride,” LANGMUIR, pp. 2667–2678, 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/62648.