Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Multiscale Modeling of Nanocrystalline Metals based on Competing Grain Boundary and Grain Interior Deformation Mechanisms
Date
2012-10-23
Author
Gürses, Ercan
Metadata
Show full item record
Item Usage Stats
124
views
0
downloads
Cite This
URI
https://hdl.handle.net/11511/78006
Collections
Unverified, Conference / Seminar
Suggestions
OpenMETU
Core
Multiscale Modeling of Nanocrystalline Materials: A Variational Approach
Birkle, Manuel; Gürses, Ercan; Miehe, Christian (2011-04-21)
This paper presents a variational multi-scale constitutive model in the finite deformation regime capable of capturing themechanical behavior o f nanocrystalline (nc) fcc metals. The nc-material is modeled as a two-phase material consistin g of agrain interior (GI) phase and a grain boundary (GB) phase. A rate-independent isotropic porous plasticity model is employedto describe the GB p hase, whereas a cryst al - plasticity model which accounts for t he transition from partial disl ocation to fulldislocation...
Multiscale Modeling of High Energetic Materials under Impact Loads
Rımolı, Julıan; Gürses, Ercan; Ortız, Mıchael (2009-07-19)
Multiscale Modeling of Thin-Wire Coupling Problems Using Hybridization of Finite Element and Dipole Moment Methods and GPU Acceleration
ÖZGÜN, ÖZLEM; Mittra, Raj; Kuzuoğlu, Mustafa (2020-01-01)
In this article, a hybrid numerical method, called finite element method (FEM) + dipole moment (DM), is presented for efficient solution of multiscale electromagnetic radiation and scattering problems that involve structures with fine features, such as thin-wire antennas or objects. In this method, the FEM is hybridized with the DM approach to help ease certain computational burdens, such as mesh refinement, ill-conditioning, memory overload, and long computation times, when solving multiscale problems with...
Multiscale analysis of solids flux signals measured in a high density circulating fluidized bed using wavelet transformation
Külah, Görkem (2005-05-13)
In order characterize the annulus thickness in a high density circulating fluidized bed, local instantaneous solids fluxes are measured using a three-fibre optical probe in a 0.20 m diameter, 5.9 m tall CFB riser operating at superficial gas velocity of 6 m/s and solids circulation flux of 330 kg/m(2)s, with FCC particles of mean diameter 70 mu m and density 1700 kg/m(3) as the bed material. Measurements obtained at three axial levels (z = 0.76, 1.27, 3.10 m) and six radial locations (r/R = 0.94, 0.88, 0.75...
Multiscale Modeling of the Morphology and Properties of Segmented Silicone-Urea Copolymers
Yıldırım, Erol; Yurtsever, Ersin; Yilgor, Iskender; Yilgor, Emel (Springer Science and Business Media LLC, 2011-9-9)
Molecular dynamics and mesoscale dynamics simulation techniques were used to investigate the effect of hydrogen bonding on the microphase separation, morphology and various physicochemical properties of segmented silicone-urea copolymers. Model silicone-urea copolymers investigated were based on the stoichiometric combinations of alpha,omega-aminopropyl terminated polydimethylsiloxane (PDMS) oligomers with number average molecular weights ranging from 700 to 15,000 g/mole and bis(4-isocyanatocyclohexyl)meth...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Gürses, “Multiscale Modeling of Nanocrystalline Metals based on Competing Grain Boundary and Grain Interior Deformation Mechanisms,” 2012, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/78006.