Orbit Estimation Strategy for Low Earth Orbit and Geostationary Satellites

2018-08-23

Suggestions

ORBIT ESTIMATION STRATEGY FOR LOW EARTH ORBIT AND GEOSTATIONARY SATELLITES
Koker, Abdulkadir; Tekinaip, Ozan (2019-01-01)
In this paper, an orbit determination strategy that uses non-recursive batch filter, and unscented Kalman filter methods is presented and utilized for satellite orbit determination. For the orbit determination system, the range, azimuth, and elevation angles of the satellite measured from ground tracking stations are used for observations. An efficient filter initialization algorithm using the Gibbs method is also proposed to provide an initial state estimate. The non-recursive batch filter is applied to im...
Orbit determination strategy and verification for geosynchronous satellites
Köker, Abdulkadir; Tekinalp, Ozan; Department of Aerospace Engineering (2019)
In this thesis, the batch and sequential orbit determination procedures for the geostationary satellites are presented. The aim of the study is to investigate the effect of the angle only and standard angle-range measurements on orbit determination accuracy. The effect of various factors on estimation accuracy such as measurement frequency, observation duration, and number of observation sites are investigated using the simulated measurement data. Estimation methods namely, nonlinear least square, extended ...
Orbit transfer optimization of a spacecraft with impulsive thrusts using genetic algorithm
Yılmaz, Ahmet; Özgören, Mustafa Kemal; Department of Mechanical Engineering (2012)
This thesis addresses the orbit transfer optimization problem of a spacecraft. The optimal orbit transfer is the process of altering the orbit of a spacecraft with minimum propellant consumption. The spacecrafts are needed to realize orbit transfer to reach, change or keep its orbit. The spacecraft may be a satellite or the last stage of a launch vehicle that is operated at the exo-atmospheric region. In this study, a genetic algorithm based orbit transfer method has been developed. The applicability of gen...
ORBIT TRANSFER OF AN EARTH ORBITING SOLAR SAIL CUBESAT
Atas, Omer; Tekinalp, Ozan (2017-02-09)
Propelling a spacecraft by using solar radiation pressure is examined in the context of orbital maneuvers. A locally optimal steering law to progressively change number of selected orbital elements together is addressed. An Earth centered cubesat satellite with solar sail is used as an example. The proper attitude maneuver mechanization is proposed to harvest highest solar radiation force in the desired direction for Earth orbiting satellites. The satellite attitude control is realized using to-go quaternio...
Orbit dynamics attitude dynamics and control:Investigation into possible applications to Türksat
Uslu, H Özge; Tekinalp, Ozan; Tulunay, Yurdanur; Department of Aeronautical Engineering (1997)
Citation Formats
O. Tekinalp, “Orbit Estimation Strategy for Low Earth Orbit and Geostationary Satellites,” 2018, Accessed: 00, 2021. [Online]. Available: http://amz.xcdsystem.com/A464D031-C624-C138-7D0E208E29BC4EDD_abstract_File10296/FinalPaper_AAS-18-365_0910105709.pdf.