Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Orbit determination strategy and verification for geosynchronous satellites
Download
index.pdf
Date
2019
Author
Köker, Abdulkadir
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
3
views
0
downloads
In this thesis, the batch and sequential orbit determination procedures for the geostationary satellites are presented. The aim of the study is to investigate the effect of the angle only and standard angle-range measurements on orbit determination accuracy. The effect of various factors on estimation accuracy such as measurement frequency, observation duration, and number of observation sites are investigated using the simulated measurement data. Estimation methods namely, nonlinear least square, extended and unscented Kalman filters are employed and compared. In angle-only estimation, only sequential methods are applied to the simulated angular measurements in order to estimate the position and velocity vectors of a GEO satellite. In standard orbit determination, batch and sequential methods are investigated separately by using both angle and range measurements. The estimation results obtained from simulations for both methods are compared. Finally, the developed batch orbit determination algorithm is compared with the reference software used at TURKSAT ground stations. It is shown that the batch software developed performs as good as if not better than the reference software.
Subject Keywords
Geostationary satellites.
,
Keywords: Orbit Determination
,
Estimation
,
Turksat Satellite
,
Kalman Filter.
URI
http://etd.lib.metu.edu.tr/upload/12624396/index.pdf
https://hdl.handle.net/11511/44347
Collections
Graduate School of Natural and Applied Sciences, Thesis