The role of genetic manipulation and in situ modifications on production of bacterial nanocellulose: A review

2021-07-31
Moradi, Mehran
Jacek, Paulina
Farhangfar, Azra
Guimarães, Jonas T.
Forough, Mehrdad
Natural polysaccharides are well-known biomaterials because of their availability and low-cost, with applications in diverse fields. Cellulose, a renowned polysaccharide, can be obtained from different sources including plants, algae, and bacteria, but recently much attention has been paid to the microorganisms due to their potential of producing renewable compounds. In this regard, bacterial nanocellulose (BNC) is a novel type of nanocellulose material that is commercially synthesized mainly by Komagataeibacter spp. Characteristics such as purity, porosity, and remarkable mechanical properties made BNC a superior green biopolymer with applications in pharmacology, biomedicine, bioprocessing, and food. Genetic manipulation of BNC-producing strains and in situ modifications of the culturing conditions can lead to BNC with enhanced yield/productivity and properties. This review mainly highlights the role of genetic engineering of Komagataeibacter strains and co-culturing of bacterial strains with additives such as microorganisms and nanomaterials to synthesize BNC with improved functionality and productivity rate.
International Journal of Biological Macromolecules

Suggestions

The effect of solids concentration and particle properties on cloud height in tall stirred tanks
Altıntaş, Ezgi; Ayrancı Tansık, İnci; Department of Chemical Engineering (2021-6)
Solid-liquid mixing is one of the most commonly used unit operations in industries such as petrochemicals, polymer processing, biotechnology, pharmaceuticals, and mineral processing. There are two focuses in solid-liquid mixing operations: solids suspension and solids distribution. The key design parameter for solids suspension is Njs. In most solids suspensions, the main objective is to provide maximum contact between solid and liquid phases with minimum power consumption, and this can be achieved by setti...
The use of gold and silver nanoparticles for surface enhanced fluorescence (SEF) of Dyes
Öztürk, Tacettin; Volkan, Mürvet; Department of Chemistry (2010)
This study focuses on preparing surface enhanced fluorescence (SEF) substrates for use in the enhancement of the emission signal of rhodamine B and fluorescein dyes. Fluorescence spectroscopy has been widely utilized owing to its high sensitivity. SEF is a process where the interactions of fluorophores with the localized surface plasmons of metal nanoparticles results in fluorescence enhancement, increased photostability and rates of system radiative decay which leads to a decreased lifetime. One of the mos...
The effect of Dilution, Aeration, and Agitation on Fungal Cellulase and Xylanase Production by DDGS-based Fermentation Media in Stirred Tank Bioreactors
Iram, Attia; Çekmecelioğlu, Deniz; Demirci, Ali (2022-01-01)
Fungal cellulases and xylanases are commonly used for biological pretreatment of lignocellulosic biomass into simple sugars, which can then be converted into many value-added products including bioethanol. However, these enzymes are costly to produce and need a feedstock that should be more economical and high in fiber and other nutrients. Distillers dried grains with solubles (DDGS) is the byproduct of corn ethanol production and can be considered an appropriate feedstock. Among various problems in adaptat...
The influence of ionic strength and mixing ratio on the colloidal stability of PDAC/PSS polyelectrolyte complexes
Zhang, Yanpu; Yıldırım, Erol; Antila, Hanne S.; Valenzuela, Luis D.; Sammalkorpi, Maria; Lutkenhaus, Jodie L. (2015-01-01)
Polyelectrolyte complexes (PECs) form by mixing polycation and polyanion solutions together, and have been explored for a variety of applications. One challenge for PEC processing and application is that under certain conditions the as-formed PECs aggregate and precipitate out of suspension over the course of minutes to days. This aggregation is governed by several factors such as electrostatic repulsion, van der Waals attractions, and hydrophobic interactions. In this work, we explore the boundary between ...
The effect of para-cyclophane structure on cyclacenes
Türker, Burhan Lemi (2000-02-01)
Semiempirical molecular orbital treatment at the level of AMI type has been performed on the Huckel type cyclacenes having the normal and the skew type para-cyclophane moiety embedded into their structures. The cyclophane effect is found to be operative on the lower members by veiling the cryptoannulenic effect which is influential on the heats of formation values and the frontier molecular orbital energies of the higher members as well as the parent cyclacenes.
Citation Formats
M. Moradi, P. Jacek, A. Farhangfar, J. T. Guimarães, and M. Forough, “The role of genetic manipulation and in situ modifications on production of bacterial nanocellulose: A review,” International Journal of Biological Macromolecules, pp. 635–650, 2021, Accessed: 00, 2021. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85105290682&origin=inward.