On the Parity of Power Permutations

2021-01-01
Comak, Pinar
Özbudak, Ferruh
CCBYSide-channel analysis (SCA) attacks and many countermeasures to foil these attacks have been the subject of a large body of research. Different masking schemes have been proposed as countermeasures, one of which is Threshold Implementation (TI), which carries proof of security against DPA even in the presence of glitches. At the same time, it requires a smaller area and uses much less randomness than the other secure masking methods. One of the methods to have an efficient TI of high degree S-boxes is the decomposition method. Our goal in this paper is to analyze the nonlinear components of symmetric cryptographic algorithms. To minimize the area of the protected implementation of cryptographic algorithms, we show the conditions to decompose the substitutions boxes, which are permutations, of high algebraic degree into the ones of lower degree. To find the conditions, we target the decomposition of permutations into quadratic or cubic permutations by considering the power permutations and their parities, which help us determine whether the higher degree permutations are decomposable power permutations or not. Finally, the decomposition results about the finite fields and corresponding lower degree power permutations are presented.

Suggestions

Asymptotic Security of Control Systems by Covert Reaction: Repeated Signaling Game with Undisclosed Belief
Sasahara, Hampei; Sarıtaş, Serkan; Sandberg, Henrik (2020-12-14)
This study investigates the relationship between resilience of control systems to attacks and the information available to malicious attackers. Specifically, it is shown that control systems are guaranteed to be secure in an asymptotic manner by rendering reactions against potentially harmful actions covert. The behaviors of the attacker and the defender are analyzed through a repeated signaling game with an undisclosed belief under covert reactions. In the typical setting of signaling games, reactions cond...
MODELING OF STORE SEPARATION BEHAVIOR BASED ON A NEURAL NETWORK AND UNSTEADY FLOW SOLUTIONS
Erinç, Erdoğan; Tuncer, İsmail Hakkı (null; 2015-09-10)
In this study a neural network based method is developed for the prediction of separation characteristics of external store weapons carried under aircraft wings. The method is based on an artificial neural network trained by high fidelity unsteady flow solutions. The unsteady flow solutions as the store separates from the carriage and the resulting six degrees of freedom motion of the store are computed conditions by a commercial flow solver for various flight conditions. The trajectory of the store and the...
Universal adversarial perturbations using alternating loss functions
Şen, Deniz; Temizel, Alptekin; Department of Modeling and Simulation (2022-8-23)
Deep learning models have been the main choice for image classification, however, recently it has been shown that even the most successful models are vulnerable to adversarial attacks. Unlike image-dependent attacks, universal adversarial perturbations can generate an adversarial example when added to any image. These perturbations are usually generated to fool the whole dataset and most successful attacks can reach 100% fooling rate, however they cannot be controlled to stabilize around a desired fooling r...
On some cryptographic properties of Rijndael
Kavut, S; Yucel, MD (2001-01-01)
We examine diffusion properties of Rijndael which has been selected by US National Institute of Standards and Technology (NIST) for the proposed Advanced Encryption Standard (AES). Since the s-box of Rijndael applies a nonlinear transformation operating on each byte of the intermediate cipher result independently, its characteristics have significant effects on the strength of the entire system. The characteristics of Rijndael's s-box are investigated for the criteria of avalanche, strict avalanche, bit ind...
Evaluation of Acoustic Gunshot Localization Methods on Helicopters with Environmental Sound Simulations
Yılmaz, Murat; Günel Kılıç, Banu (2022-01-01)
Although there are ground based localization solutions for Small Arms Fire (SAF) attacks, there are only a few implementations of onboard applications. A simple Acoustic Source Localization (ASL) application employs a microphone array for collecting audio signals, so as to locate sound sources using the measurements from the sound field. The aim of this study is to investigate the possibility of Acoustic Gunshot Localization on a helicopter so as to detect and localize SAF attacks, by simulating the effects...
Citation Formats
P. Comak and F. Özbudak, “On the Parity of Power Permutations,” IEEE Access, pp. 0–0, 2021, Accessed: 00, 2021. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85110872439&origin=inward.