The Site and Phase Preferences of Mo Element in a Model Ni-Al-Mo Superalloy

2021-06-12
It is well accepted that the superior mechanical properties of Ni-based superalloys can be further enhanced by alloying elementaddition which leads to formation of coherently distributed γ'-Ni3Al precipitates within γ-Ni matrix. Depending on the siteand phase preferences of alloying elements, novel types of these materials can be developed. The current study aims to revealsite and phase preferences of X = Mo element via first-principles calculations and energy-dispersive X-ray spectroscopy(EDS) technique. To conclude, X = Mo atoms prefer to occupy Al sites of γ' precipitates and participate into γ matrix.
20th International Metallurgy & Materials Congress

Suggestions

The effect of peripheral circuits on the total pi-electron energies of cyclacenes
Türker, Burhan Lemi (2000-01-01)
Within the framework of the Huckel molecular orbital theory, certain linear models are developed to express the contribution of peripheral circuits of cyclacenes into their total pi -electron energies, which explain why cyclacenes exhibit the cryptoannulenic behavior as their peripheral circuits which are annulenic in character.
The Site Preferences of Transition Elements and Their Synergistic Effects on the Bonding Strengthening and Structural Stability of gamma '-Ni3Al Precipitates in Ni-Based Superalloys: A First-Principles Investigation
Eriş, Rasim; Akdeniz, Mahmut Vedat; Mehrabov, Amdulla (2021-04-01)
Advanced mechanical properties of Ni-based superalloys strongly depend on the site preferences of alloying X elements in gamma '-Ni3Al-X precipitates, which are associated with the partial bonding characteristics between Ni, Al, and X atoms. Therefore, in the current work, the site occupancy tendencies of transition X metals were revealed via first-principles ab initio calculations at 0 K. Bonding features of Ni-Al, Ni-X, and Al-X pairs were simulated by using the charge density difference (CDD), electron l...
The effect of substitutional impurities on the evolution of FeAl diffusion layer
Akdeniz, Mahmut Vedat; Mehrabov, Amdulla (Elsevier BV, 1998-2-13)
The formation and growth characteristics of Fe based aluminide diffusion layers at the Fe-Al interface have been analysed in terms of interfacial interaction potentials based on the statistico-thermodynamical theory of multicomponent alloys combined with electronic theory in the pseudopotential approximation. The pairwise interatomic interaction potentials and partial ordering energies have been calculated to predict the effect of various alloying additions on the activity coefficient of Al atoms in α-Fe0.9...
The electronic structure of GanPm(n+m = 5, 17, 29, 35), Ga13P4 (in SiO2) and Ga13P4 (in sodalite) clusters
Katırcıoğlu, Şenay (Elsevier BV, 2004-12-31)
The electronic structure of optimized GanPm(n+m=5, 17, 29, 35) isomers and Ga13P4 cluster in SiO2 matrix and sodalite cage has been studied by Hartree-Fock theory to find out the effect of cluster size and Ga-O bonds on the optical energy gap between LUMO and HOMO. It was found that the optical energy gap of Gal? clusters can be regulated by both the cluster size and the Ga-O interface satisfied by either SiO2 matrix or sodalite cage. The energy gap between LUMO and HOMO of Ga13P4 (in sodalite) cluster has ...
The spin effects on electronic, optical and mechanical properties of new ferromagnetic chalcopyrite: YMnS2
Yıldız, Buğra; Erkisi, Aytac; Sürücü, Gökhan (2022-05-15)
In this study, magnetic and electronic nature, optical behavior, and elasticity properties of YMnS2 compound have been investigated by using density functional theory (DFT). The compound belongs to the chalcopyrite family having tetragonal crystal structure with 122 (I-42d) space group. Firstly, the optimization process has been done for ferromagnetic, antiferromagnetic, and paramagnetic orders to find most stable magnetic order and the formation energies have been determined. Negative formation energies pr...
Citation Formats
R. Eriş, M. V. Akdeniz, and A. Mehrabov, “The Site and Phase Preferences of Mo Element in a Model Ni-Al-Mo Superalloy,” presented at the 20th International Metallurgy & Materials Congress, 2021, Accessed: 00, 2021. [Online]. Available: http://www.immc-mtm.com/docs/IMMC2021_BildirlerKitabi_R08.pdf.