Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Removal of microplastics from wastewater through electrocoagulation-electroflotation and membrane filtration processes
Date
2021-09-01
Author
AKARSU, CEYHUN
KUMBUR, HALİL
Kıdeyş, Ahmet Erkan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
327
views
0
downloads
Cite This
Wastewater treatment plants (WWTPs) are one of the major vectors of microplastics (MPs) pollution for the recipient water bodies. Therefore, the recovery of MPs from WWTPs is extremely important for decreasing their accumulation and impact in aquatic systems. In this present study, the electrocoagulation-electroflotation (EC/En and membrane filtration processes were investigated in removing MPs from wastewaters. The effectiveness of different electrode combinations (Fe-Al and Al-Fe), current density (10-20 A/m(2)), pH (4.0-10.0) and operating times (0-120 min) on the removal of two different polymer particles in water were investigated to obtain maximum treatment efficiency. The effect of pressure (1-3 bar) on membrane filtration removal efficiency was also investigated. The maximum removal efficiencies were obtained as 100% for both polymer types with electrode combination of Al-Fe, initial pH of 7, current density of 20 A/m(2) and reaction time of 10 min. The membrane filtration method also displayed a 100% removal efficiency. In addition, these laboratory-scale results were compared with the one-year average data of a plant treating with real-scale membranes. The results indicated that the proposed processes were supplied maximum removal efficiency (100%) compared to conventional secondary and tertiary treatment methods (2-81.6%) in the removal of microplastics.
URI
https://hdl.handle.net/11511/92464
Journal
WATER SCIENCE AND TECHNOLOGY
DOI
https://doi.org/10.2166/wst.2021.356
Collections
Graduate School of Marine Sciences, Article
Suggestions
OpenMETU
Core
Removal of imidacloprid from wastewaters by ozonation and photo-ozonation
Sönmez, Büşra; Dilek, Filiz Bengü; Department of Environmental Engineering (2019)
The widespread occurrence of micropollutants in the receiving water bodies apparently shows that conventional wastewater treatment plants (WWTP) are not capable to remove these compounds. Imidacloprid (IMI), which is a specific pollutant and an insecticide, exceeded Environmental Quality Standards (EQS) value (0.14 µg/L, annual average) in several receiving water bodies of WWTPs in Yeşilırmak basin. With the aim of examining advanced treatment methods to meet EQS value and to achieve good surface water qual...
Removal of pesticides from secondary treated urban wastewater by reverse osmosis
ATEŞ, NURAY; UZAL, NİĞMET; Yetiş, Ülkü; Dilek, Filiz Bengü (2022-04-01)
The residues of pesticides that reach water resources from agricultural activities in several ways contaminate drinking water resources and threaten aquatic life. This study aimed to investigate the performance of three reverse osmosis (RO) membranes (BW30-LE, SW30-XLE, and GE-AD) in rejecting four different pesticides (tributyl phosphate, flutriafol, dicofol, and irgarol) from secondary treated urban wastewater and also to elucidate the mechanisms underlying the rejection of these pesticides. RO experiment...
Removal of Pesticide from Water with Fenton-like Process: Effectiveness of a new heterogeneous catalyst (Fenton Benzeri Proses ile Sulardan Pestisit Giderimi: Yeni bir heterojen katalizörün etkinliğinin araştırılması)
Dilek, Filiz Bengü(2017-12-31)
Extensive utilization of pesticides in the form of herbicides, fungicides, insecticides result in surface water pollution through runoff from agricultural lands and urban discharges. Besides, their very low concentrations (μg/L or ng/L) in surface water bodies and in domestic wastewaters, removal of these pollutants in Wastewater Treatment Plants (WWTPs) are recommended due to being highly persistent, toxic, bio-accumulative and hence dangerous for aquatic ecosystems. Advanced oxidation processes (AOPs) are...
Microplastics composition and load from three wastewater treatment plants discharging into Mersin Bay, north eastern Mediterranean Sea
AKARSU, CEYHUN; KUMBUR, HALİL; Gokdag, Kerem; Kıdeyş, Ahmet Erkan; Sanchez-Vidal, Anna (2020-01-01)
Copious quantities of microplastics enter the sewage system on a daily basis, and hence wastewater treatment plants (WWTPs) could be an important source of microplastic pollution in coastal waters. Influent and effluent discharges from three WWTPs in Mersin Bay, Turkey were sampled at monthly intervals over a one-year period during 2017. When data from all WWTPs were combined, fibers constituted the dominant particle form, accounting for 69.7% of total microplastics. Although notable oscillations in micropl...
Removal of THM precursors by GAC: Ankara case study
Capar, G; Yetiş, Ülkü (2002-03-01)
The effectiveness of granular activated carbon (GAC) adsorption for the removal of natural organic matter and trihalomethanes from Ivedik Water Treatment Plant of Ankara City is investigated. Freundlich Isotherm constants K and n were determined as 17.61 and 1.66, respectively. Bench-scale GAC columns were run with empty bed contact times (EBCT) varying from 0.40 to 2.67 min to evaluate adsorption performance. 50% exhaustion values were used for comparison. The treated volumes of water increased with EBCT, ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
C. AKARSU, H. KUMBUR, and A. E. Kıdeyş, “Removal of microplastics from wastewater through electrocoagulation-electroflotation and membrane filtration processes,”
WATER SCIENCE AND TECHNOLOGY
, pp. 0–0, 2021, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/92464.