Type-tunable amplified spontaneous emission from core-seeded CdSe/CdS nanorods controlled by exciton-exciton interaction

Download
2014-08-01
Keleştemur, Yusuf
Guzelturk, Burak
Demir, Hilmi Volkan
Type-tunable optical gain performance of core-seeded CdSe/CdS nanorods is studied via two-photon optical pumping. Controlling the exciton-exciton interaction by varying the core and shell size, blue-shifted and red-shifted modes of amplified spontaneous emission are systematically demonstrated and their type attributions are verified by time-resolved emission kinetics.
NANOSCALE

Suggestions

Equipotential projection based MREIT reconstruction without potential measurements
Eyüboğlu, Behçet Murat (2007-09-02)
Magnetic resonance electrical impedance tomography (MREIT) is used to produce high resolution images of true conductivitv distribution. Images are reconstructed by utilising measurements of magnetic flux density distribution and surface potentials. Surface potential measurements are needed to reconstruct true conductivity values. In this study, a novel MREIT reconstruction algorithm is developed to generate conductivity images without utilizing the surface potential measurements. The proposed algorithm and ...
Regional Image Reconstruction with Optimum Currents for MREIT - Evaluation on Shepp-Logan Conductivity Phantom
Eyüboğlu, Behçet Murat; Altunel, Haluk (2008-11-27)
In this study, an image reconstruction algorithm for magnetic resonance electrical impedance tomography (MREIT) is proposed to achieve maximum benefit of optimum current injection patterns. By doing so, considerable reduction in probing current amplitude could be possible. In the proposed algorithm, field of view (FOV) is divided into a number of segments. Image of each segment is reconstructed separately, based on measurements obtained using the best (optimum) current patterns, which maximize distinguishab...
2D simulations based on the general time dependent reciprocal relation and initial experiments for LFEIT /
Karadaş, Mürsel; Gençer, Nevzat Güneri; Department of Electrical and Electronics Engineering (2014)
In this study, the new imaging modality Lorentz Field Electrical Impedance Tomography (LFEIT) is investigated. In LFEIT, the main aim is finding the conductivity distribution of different tissues. This method is based on the development of the current density distribution in the conductive medium. To develop the current density, the object is located in a static magnetic field and pressure wave due to an ultrasonic transducer develops particle movements inside the body. As a result, a velocity current distr...
Fiber-integrated terahertz spectrometer driven by ultrafast ytterbium doped fiber laser
Keskin, Hakan; Altan, Hakan; Berberoğlu, Halil Giray; Department of Physics (2013)
In this thesis, development of a Terahertz time domain spectrometer (THz-TDS) driven by an ultrafast Ytterbium (Yb) doped ber laser, whose repetition rate can be tuned, was investigated to show that it can be used in Optical Sampling by Cavity Tuning (OSCAT) technique which enables the fast acquisition of THz pulse pro les. Central wavelength of the Yb-doped laser developed for this study is 1031 nm. The output average power was measured to be 90 mW which corresponds to about two nanojoule per pulse at 51 ...
Current constrained voltage scaled reconstruction (CCVSR) algorithm for MR-EIT and its performance with different probing current patterns
Birgul, O; Eyüboğlu, Behçet Murat; Ider, YZ (IOP Publishing, 2003-03-07)
Conventional injected-current electrical impedance tomography (EIT) and magnetic resonance imaging (MRI) techniques can be combined to reconstruct high resolution true conductivity images. The magnetic flux density distribution generated by the internal current density distribution is extracted from MR phase images. This information is used to form a fine detailed conductivity image using an Ohm's law based update equation. The reconstructed conductivity image is assumed to differ from the true image by a s...
Citation Formats
Y. Keleştemur, B. Guzelturk, and H. V. Demir, “Type-tunable amplified spontaneous emission from core-seeded CdSe/CdS nanorods controlled by exciton-exciton interaction,” NANOSCALE, vol. 6, no. 15, pp. 8509–8514, 2014, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/92756.