Learning Parameters of ptSTL Formulas with Backpropagation

2020-01-01
Ketenci, Ahmet
Aydın Göl, Ebru
In this paper, a backpropagation based algorithm is presented to learn parameters of past time Signal Temporal Logic (ptSTL) formulas. A differentiable weight matrix over the parameter values and a loss function based on the mismatch value of the corresponding formulas over the labeled dataset are used in the algorithm. Analysis over a sample dataset shows that the algorithm solves the ptSTL parameter synthesis problem in an efficient way.
28th Signal Processing and Communications Applications Conference (SIU)

Suggestions

Learning semi-supervised nonlinear embeddings for domain-adaptive pattern recognition
Vural, Elif (null; 2019-05-20)
We study the problem of learning nonlinear data embeddings in order to obtain representations for efficient and domain-invariant recognition of visual patterns. Given observations of a training set of patterns from different classes in two different domains, we propose a method to learn a nonlinear mapping of the data samples from different domains into a common domain. The nonlinear mapping is learnt such that the class means of different domains are mapped to nearby points in the common domain in order to...
Unpredictable Oscillations for Hopfield-Type Neural Networks with Delayed and Advanced Arguments
Akhmet, Marat; Tleubergenova, Madina; Nugayeva, Zakhira (2021-03-01)
This is the first time that the method for the investigation of unpredictable solutions of differential equations has been extended to unpredictable oscillations of neural networks with a generalized piecewise constant argument, which is delayed and advanced. The existence and exponential stability of the unique unpredictable oscillation are proven. According to the theory, the presence of unpredictable oscillations is strong evidence for Poincare chaos. Consequently, the paper is a contribution to chaos ap...
Learning customized and optimized lists of rules with mathematical programming
Rudin, Cynthia; Ertekin Bolelli, Şeyda (Springer Science and Business Media LLC, 2018-12-01)
We introduce a mathematical programming approach to building rule lists, which are a type of interpretable, nonlinear, and logical machine learning classifier involving IF-THEN rules. Unlike traditional decision tree algorithms like CART and C5.0, this method does not use greedy splitting and pruning. Instead, it aims to fully optimize a combination of accuracy and sparsity, obeying user-defined constraints. This method is useful for producing non-black-box predictive models, and has the benefit of a clear ...
Efficient and Accurate Electromagnetic Optimizations Based on Approximate Forms of the Multilevel Fast Multipole Algorithm
Onol, Can; Karaosmanoglu, Bariscan; Ergül, Özgür Salih (2016-01-01)
We present electromagnetic optimizations by heuristic algorithms supported by approximate forms of the multilevel fast multipole algorithm (MLFMA). Optimizations of complex structures, such as antennas, are performed by considering each trial as an electromagnetic problem that can be analyzed via MLFMA and its approximate forms. A dynamic accuracy control is utilized in order to increase the efficiency of optimizations. Specifically, in the proposed scheme, the accuracy is used as a parameter of the optimiz...
Learning Parametric Time-Vertex Graph Processes from Incomplete Realizations
Guneyi, Eylem Tugce; Canbolat, Abdullah; Vural, Elif (2021-01-01)
© 2021 IEEE.We consider the problem of estimating time-varying graph signals with missing observations, which is of interest in many applications involving data acquisition on irregular topologies. We model time-varying graph signals as jointly stationary time-vertex ARMA graph processes. We formulate the learning of ARMA process parameters as an optimization problem where the joint power spectral density of the model is fit to a rough empirical estimate of the process covariance matrix. We propose a convex...
Citation Formats
A. Ketenci and E. Aydın Göl, “Learning Parameters of ptSTL Formulas with Backpropagation,” presented at the 28th Signal Processing and Communications Applications Conference (SIU), ELECTR NETWORK, 2020, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/93811.