Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Learning Time-Vertex Dictionaries for Estimating Time-Varying Graph Signals
Date
2022-01-01
Author
Acar, Abdullah Burak
Vural, Elif
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
175
views
0
downloads
Cite This
In this work, we study the problem of learning time-vertex dictionaries for the modeling and estimation of time-varying graph signals. We consider a setting with a collection of partially observed time-varying graph signals, and propose a solution for the estimation of the missing signal observations by learning time-vertex dictionaries from the available observations. We adopt a time-vertex dictionary model defined through a set of joint time-vertex spectral kernels, each of which captures a different spectral component of the signals in their joint time-vertex spectrum. The kernel parameters are optimized along with the representations of the signals so as to be coherent with the available signal observations. Experimental results show that the proposed method yields promising estimation performance in comparison with non-adaptive graph dictionary models and baseline classical graph regression methods.
Subject Keywords
graph dictionary learning
,
Graph signal processing
,
time-vertex joint spectrum
,
time-vertex representation learning
,
time-vertex signals
URI
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85142687274&origin=inward
https://hdl.handle.net/11511/101625
DOI
https://doi.org/10.1109/mlsp55214.2022.9943416
Conference Name
32nd IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2022
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Learning Graph Signal Representations with Narrowband Spectral Kernels
Kar, Osman Furkan; Turhan, Gülce; Vural, Elif (2022-01-01)
In this work, we study the problem of learning graph dictionary models from partially observed graph signals. We represent graph signals in terms of atoms generated by narrowband graph kernels. We formulate an optimization problem where the kernel parameters are learnt jointly with the signal representations under a triple regularization scheme: While the first regularization term aims to control the spectrum of the narrowband kernels, the second term encourages the reconstructed graph signals to vary smoot...
Estimation of Time-Varying Graph Signals by Learning Graph Dictionaries Zamanda Deǧişen Graf Sinyallerinin Kestirimi için Graflarda Sözlük Öǧrenme
Acar, Abdullah Burak; Vural, Elif (2022-01-01)
We study the problem of estimating time-varying graph signals from missing observations. We propose a method based on learning graph dictionaries specified by a set of time-vertex kernels in the joint spectral domain. The parameters of the time-vertex kernels are optimized jointly with the sparse representation coefficients of the signals, so that the learnt representation fits well to the available observations of the time-vertex signals at hand. The missing observations of the signals are then estimated b...
Learning Parametric Time-Vertex Graph Processes from Incomplete Realizations
Guneyi, Eylem Tugce; Canbolat, Abdullah; Vural, Elif (2021-01-01)
© 2021 IEEE.We consider the problem of estimating time-varying graph signals with missing observations, which is of interest in many applications involving data acquisition on irregular topologies. We model time-varying graph signals as jointly stationary time-vertex ARMA graph processes. We formulate the learning of ARMA process parameters as an optimization problem where the joint power spectral density of the model is fit to a rough empirical estimate of the process covariance matrix. We propose a convex...
Investigation of Stationarity for Graph Time Series Data Sets
Güneyi, Eylem Tuğçe; Vural, Elif (2021-01-07)
Graphs permit the analysis of the relationships in complex data sets effectively. Stationarity is a feature that facilitates the analysis and processing of random time signals. Since graphs have an irregular structure, the definition of classical stationarity does not apply to graphs. In this study, we study how stationarity is defined for graph random processes and examine the validity of the stationarity assumption with experiments on synthetic and real data sets.
Learning semi-supervised nonlinear embeddings for domain-adaptive pattern recognition
Vural, Elif (null; 2019-05-20)
We study the problem of learning nonlinear data embeddings in order to obtain representations for efficient and domain-invariant recognition of visual patterns. Given observations of a training set of patterns from different classes in two different domains, we propose a method to learn a nonlinear mapping of the data samples from different domains into a common domain. The nonlinear mapping is learnt such that the class means of different domains are mapped to nearby points in the common domain in order to...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. B. Acar and E. Vural, “Learning Time-Vertex Dictionaries for Estimating Time-Varying Graph Signals,” Xian, Çin, 2022, vol. 2022-August, Accessed: 00, 2023. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85142687274&origin=inward.