Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A Bound Based Method for Beamformer Design in Downlink Cloud Radio Access Networks
Date
2021-10-01
Author
Kadan, Fehmi Emre
Yılmaz, Ali Özgür
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
206
views
0
downloads
Cite This
Cloud Radio Access Network is a candidate solution in 5G and beyond where we intend to serve as many users as possible with minimum transmit power and minimum fronthaul data transmission. In this study, we aim to maximize a mixed expression of the number of users served, the number of fronthaul links used, and the total transmitted power by beamforming optimization under imperfect channel state information. We find a theoretical upper bound and propose a method based on the bound derivation. We compare its performance with heuristic search and norm approximation methods solving a series of convex sub-problems. The detailed simulations show that the proposed method outperforms other baseline techniques in terms of the number of users served, fronthaul data rate, power consumption, and computational complexity.
URI
https://hdl.handle.net/11511/94551
Journal
IEEE COMMUNICATIONS LETTERS
DOI
https://doi.org/10.1109/lcomm.2021.3100271
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
A Framework for Energy based Performability models for Wireless Sensor Networks
Omondi, Fredrick A.; Shah, Purav; Gemikonakli, Orhan; Ever, Enver (2015-03-27)
A novel idea of alternating node operations between Active and Sleep modes in Wireless Sensor Network (WSN) has successfully been used to save node power consumption. The idea which started off as a simple implementation of a timer in most protocols has been improved over the years to dynamically change with traffic conditions and the nature of application area. Recently, use of a second low power radio transceiver to triggered Active/Sleep modes has also been made. Active/Sleep operation modes have also be...
A Novel Transceiver Architecture for Highly Dispersive NOMA Channels
Güvensen, Gökhan Muzaffer; Yılmaz, Ali Özgür (2018-06-06)
When the requirements of internet of things (IoT) and machine-type communication (MTC) are considered, the 5G technology needs to support high spectral efficiency and massive connectivity of users/devices, and the demand for low latency, short packet duration, low power, high mobility and diverse service types. In this paper, first a new multiple access technique belonging to the class of non-orthogonal multiple access (NOMA) based on multi-code signaling (MCS) is proposed for the uplink data transmission m...
A Random Access Scheme for Large Scale 5G/IoT Applications
Balevi, Eren; Gitlin, Richard D. (2018-01-01)
The integration of slotted Aloha with power domain non-orthogonal multiple access (NOMA), dubbed slotted Aloha-NOMA (SAN) can emerge as an appealing MAC protocol to be used for Internet-of-Things (IoT) applications over 5G networks. In this paper, SAN is discussed, and its performance is evaluated in detail. The simulation results demonstrate that the maximum normalized throughput can be increased from 0.37, which is the case for slotted Aloha, to 1 by means of SAN. Specifically, this full throughput effici...
A new approach for the scalable intrusion detection in high-speed networks
Şahin, Ümit Burak; Schmidt, Şenan Ece; Department of Electrical and Electronics Engineering (2007)
As the networks become faster and faster, the emerging requirement is to improve the performance of the Intrusion Detection and Prevention Systems (IDPS) to keep up with the increased network throughput. In high speed networks, it is very difficult for the IDPS to process all the packets. Since the throughput of IDPS is not improved as fast as the throughput of the switches and routers, it is necessary to develop new detection techniques other than traditional techniques. In this thesis we propose a rule-ba...
A turbo detection scheme for EGPRS
Başköy (Gülmez), Ülkü; Baykal, Buyurman; Department of Electrical and Electronics Engineering (2003)
Enhanced Data Rates for Global Evolution (EDGE) is one of the 3G wireless communication standards, which provides higher data rates by adopting 8-PSK modulation in TDMA system infrastructure of GSM. In this thesis, a turbo detection receiver for Enhanced General Packet Radio Services (EGPRS) system, which is the packet switching mode of EDGE, is studied. In turbo detection, equalization and channel decoding are performed iteratively. Due to 8-ary alphabet of EGPRS modulation, full state trellis based equali...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
F. E. Kadan and A. Ö. Yılmaz, “A Bound Based Method for Beamformer Design in Downlink Cloud Radio Access Networks,”
IEEE COMMUNICATIONS LETTERS
, vol. 25, no. 10, pp. 3350–3354, 2021, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/94551.