A Framework for Energy based Performability models for Wireless Sensor Networks

Download
2015-03-27
Omondi, Fredrick A.
Shah, Purav
Gemikonakli, Orhan
Ever, Enver
A novel idea of alternating node operations between Active and Sleep modes in Wireless Sensor Network (WSN) has successfully been used to save node power consumption. The idea which started off as a simple implementation of a timer in most protocols has been improved over the years to dynamically change with traffic conditions and the nature of application area. Recently, use of a second low power radio transceiver to triggered Active/Sleep modes has also been made. Active/Sleep operation modes have also been used to separately model and evaluate performance and availability of WSNs. The advancement in technology and continuous improvements of the existing protocols and application implementation demands continue to pose great challenges to the existing performance and availability models. In this study the need for integrating performance and availability studies of WSNs in the presence of both channel and node failures and repairs is investigated. A framework that outlines and characterizes key models required for integration of performance and availability of WSN is in turn outlined. Possible solution techniques for such models are also highlighted. Finally it is shown that the resulting models may be used to comparatively evaluate energy consumption of the existing motes and WSNs as well as deriving required performance measures.
IEEE 29th International Conference on Advanced Information Networking and Applications Workshops WAINA 2015

Suggestions

A Random Access Scheme for Large Scale 5G/IoT Applications
Balevi, Eren; Gitlin, Richard D. (2018-01-01)
The integration of slotted Aloha with power domain non-orthogonal multiple access (NOMA), dubbed slotted Aloha-NOMA (SAN) can emerge as an appealing MAC protocol to be used for Internet-of-Things (IoT) applications over 5G networks. In this paper, SAN is discussed, and its performance is evaluated in detail. The simulation results demonstrate that the maximum normalized throughput can be increased from 0.37, which is the case for slotted Aloha, to 1 by means of SAN. Specifically, this full throughput effici...
Evaluation of a duty-cycled asynchronous X-MAC protocol for vehicular sensor networks
Hasan, Mohammed Zaki; Al-Turjman, Fadi (Springer Science and Business Media LLC, 2017-5-23)
An asynchronous medium access control (MAC) duty-cycled protocols have higher energy efficiency and lower packet latency than synchronized ones due to reduced idle listening. Moreover, they provide efficient utilization of energy supplied to mobile sensors. They are considered very important in MAC protocols due to the adverse effects of hidden terminals which causes energy consumption in sensor networks. Therefore, in this paper, the impact of hidden terminals on the performance of an asynchronous duty-cyc...
A Novel Input Impedance Computation Method for Coaxial Probe Fed Microstrip Antennas by Utilizing Characteristic Modes
Cetin, Metehan; Alatan, Lale (2017-07-14)
A method to efficiently compute the input impedance of the coaxial probe fed microstrip antennas by using characteristic modes is proposed in this paper. The efficiency is achieved by defining a discontinuous source current at the feed location that models the current injected by the probe. The input impedance is simply expressed in terms of modal excitation coefficients and eigenvalues of each mode.
A cross-layer protocol for wireless sensor networks
Akyildiz, Ian F.; Vuran, Mehmet C.; Akan, Ozgur B. (2006-03-24)
Severe energy constraints of battery-powered sensor nodes necessitate energy-efficient communication protocols in order to fulfill application objectives of wireless sensor networks (WSN). However, the vast majority of the existing solutions are based on classical layered protocols approach. It is much more resource-efficient to have a unified scheme which melts common protocol layer functionalities into a cross-layer module for resource-constrained sensor nodes. To the best of our knowledge, to date, there...
INVESTIGATION OF NEW ARCHITECTURAL FEATURES TO SUPPORT PERFORMANCE IMPROVEMENT IN EMBEDDED PROCESSORS
Othman, Ahmad; Fahrioğlu, Murat; Yemişcioğlu, Gürtaç; Electrical and Electronics Engineering (2022-8)
Recent advances in process automation, wireless sensor networks, and machine-to-machine (M2M) interfaces have caused embedded systems to be a blooming computing segment, with significant research focus on performance and energy efficiency. The embedded systems market witnessed enormous growth over the past decades and is foreknown to be boosted in the upcoming years. It has become harder to scale CMOS technologies compared to past and get performance and energy benefits through technology and circuits. Ther...
Citation Formats
F. A. Omondi, P. Shah, O. Gemikonakli, and E. Ever, “A Framework for Energy based Performability models for Wireless Sensor Networks,” Gwangju, SOUTH KOREA, 2015, p. 175, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/67642.