Fabrication of D-A-D type conducting polymer, carbon nanotubes and silica nanoparticle-based laccase biosensor for catechol detection

2022-08-01
Deniz, Sıddıka Aybüke
Göker, Seza
Toppare, Levent Kamil
Soylemez, Saniye
© 2022 The Royal Society of Chemistry.Herein, the biosensor design incorporates triple key materials based on amino-functionalized silica nanoparticles (SiNPs), both thieno[3,2-b]thiophene and 2,1,3-benzoselenadiazole groups containing a D-A-D type conducting polymer, and multiwalled carbon nanotubes (MWCNTs). First, the D-A-D type conducting polymer (PBSeThTh) containing thieno[3,2-b]thiophene and 2,1,3-benzoselenadiazole groups was synthesized and characterized in detail. Second, the biosensor surface was modified by adding SiNPs, PBeSeThTh, and MWCNTs on the graphite rod electrode surface. Finally, the electrochemical transducer of this trio was integrated with laccase enzyme, resulting in a highly sensitive biosensor for the detection of catechol in water samples. Unlike biosensors that integrate a unique nanomaterial-based layer without PBSeThTh, the SiNPs/PBSeThTh/MWCNTs-based new tool allowed promising sensor characteristics. The electrochemical and morphological biosensor surface characteristics were investigated using cyclic voltammetry (CV) and scanning electron microscopy (SEM)/atomic force microscopy (AFM) techniques, respectively. Moreover, the biosensor was used for the rapid detection of low concentrations of catechol in tap water samples and exhibited satisfactory reproducibility and accuracy.
New Journal of Chemistry

Suggestions

Design of a microbial sensor using conducting polymer of 4-(2,5-di(thiophen-2-yl)-1H-pyrrole-1-l) benzenamine
Tuncagil, Sevinc; ODACI DEMİRKOL, DİLEK; Yidiz, Ersin; TİMUR, SUNA; Toppare, Levent Kamil (Elsevier BV, 2009-03-28)
A microbial biosensor based on Gluconobacter oxydans cells immobilized on the conducting polymer of 4-(2,5-di(thiophen-2-yl)-1H-pyrrol-1-yl)benzenamine (SNS-NH2) coated onto the Surface of graphite electrode was constructed. The proposed biosensor was characterized using glucose as the Substrate. The linear relation was observed in the range of 0.1-2.5 mM and defined by the equation y = 0.415x + 0.377 (R-2 = 0.986). Analytical characterization, effects of electropolymerization time, pH, cell amount and the ...
Synthesis of gold nanowires with high aspect ratio and morphological purity
Dertli, Elçin; Nalbant Esentürk, Emren; Ünalan, Hüsnü Emrah; Department of Micro and Nanotechnology (2012)
Metal nanoparticles have unique optical, electrical, catalytic and mechanical properties, which lead them to various applications in nanotechnology. In particular, noble metal nanowires are attracting growing attention due to their potential applications such as in opto-electronic devices and transparent conductive contacts (TCCs). There are two general approaches to synthesize nanowires: template-assisted and solution phase methods. However, these synthesis approaches have various disadvantages. For exampl...
Production and development of flexible dye sensitized solar cells /
Kocaoğlu, Bahadır Can; Özenbaş, Ahmet Macit; Department of Metallurgical and Materials Engineering (2014)
Electrophoretic Deposition (EPD) of titania nanoparticles (P-25 Degusa) have been utilized in order to form the nanoporous photoanodes of dye-sensitized solar cells (DSSCs) on flexible polymeric (PEN) substrates. Highly uniform, adherent nanoporous thick films were produced by uniformly dispersing the titania nanoparticles in alcohol based solutions without any binders. Solution performances of each type of alcohols and mixtures of which have been examined considering their coating thickness, morphology and...
Synthesis of silver nanowires through polyol process
Coşkun, Şahin; Ünalan, Hüsnü Emrah; Department of Metallurgical and Materials Engineering (2012)
Nanotechnology enabled synthesis of various shapes and morphologies of conventional materials. Nanotubes, nanoparticles, quantum dots and nanowires are the new form of materials. Especially nanowires have gotten great attention due to their unique physical, chemical and optical properties. Superior properties of nanowires are based on their high surface area and two quantum confinement directions. Silver is one of the most conductive metals and it has the highest thermal conductivity. Due to excellent prope...
Synthesis of uniformly distributed single- and double-sided zinc oxide (ZnO) nanocombs
Yıldırım, Özlem Altıntaş; Liu, Yuzi; Petford-Long, Amanda K. (Elsevier BV, 2015-11-15)
Uniformly distributed single- and double-sided zinc oxide (ZnO) nanocomb structures have been prepared by a vapor-liquid-solid technique from a mixture of ZnO nanoparticles and graphene nanoplatelets. The ZnO seed nanoparticles were synthesized via a simple precipitation method. The structure of the ZnO nanocombs could easily be controlled by tuning the carrier-gas flow rate during growth. Higher flow rate resulted in the formation of uniformly-distributed single-sided comb structures with nanonail-shaped t...
Citation Formats
S. A. Deniz, S. Göker, L. K. Toppare, and S. Soylemez, “Fabrication of D-A-D type conducting polymer, carbon nanotubes and silica nanoparticle-based laccase biosensor for catechol detection,” New Journal of Chemistry, vol. 46, pp. 15521–15529, 2022, Accessed: 00, 2022. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85135229373&origin=inward.