Coupling hydroclimate-hydraulic-sedimentation models to estimate flood inundation and sediment transport during extreme flood events under a changing climate

2020-10-01
Tu, Tongbi
Ercan, Ali
Carr, Kara J.
Kavvas, M. Levent
Trinh, Toan
Ishida, Kei
Nosacka, John
Brown, Kevin
Extreme flood events are disastrous and can cause serious damages to society. Flood frequency obtained based on historical flow records may also be changing under future climate conditions. The associated flood inundation and environmental transport processes will also be affected. In this study, an integrated numerical modeling framework is proposed to investigate the inundation and sedimentation during multiple flood events (2,5,10, 20, 50, 100, 200-year) under future climate change scenarios in a watershed system in northern California. USA. The proposed modeling framework couples physical models of various spatial resolution: kilometers to several hundred kilometers dimatic processes, hillslope scale hydrological processes in a watershed, and centimeters to meters scale hydrodynamic and sediment transport processes in a riverine system. The modeling results show that compared to the flows during historical periods, extreme events become more extreme in the 21st century and higher flows tend to be larger and smaller flows tend to be smaller in the system. Flood inundation in the study area, especially during 200-year events, is projected to increase in the future. More sediment will be trapped as the flow increases and the deposition will also increase in the settling basin. Sediment trap efficiency values are within 37.5-65.4% for the historical conditions, within 32.4-68.8% in the first half of the 21st century, and within 34.9-69.3% in the second half of the 21st century. The results highlight the impact of climate change on extreme flood events, the resulting sedimentation, and reflected the importance of incorporating the coupling of physical models into the adaptive watershed and river system management. (C) 2020 Elsevier B.V. All rights reserved.
SCIENCE OF THE TOTAL ENVIRONMENT

Suggestions

Sensitivity analysis of 2-D flood inundation model LISFLOOD-FP with respect to spatial resolution and roughness parameter
Kıyıcı, Ezgi; Akyürek, Sevda Zuhal; Department of Civil Engineering (2019)
One of the most common disasters in the world is flooding and it’s well known that it causes environmental, social and economic damages. Since these damages could be severe and destructive due to drivers such as climate change and humane factors, the necessity of flood management studies is revealed. Europe has recognized the need for creating flood risk maps and flood hazard maps. 1-D and 2-D hydraulic models have been used to obtain these maps. This study is focused on the sensitivity of a 2-D hydraulic m...
Evaluation of numerical weather prediction models for flash flood warnings in Turkey
Aksoy, Mehmet; Yücel, İsmail; Department of Civil Engineering (2020-10-15)
Flash floods are among the most destructive natural disasters in both Turkey and world that cause loss of life and property. In this study, monthly distribution of heavy rainfall events in the period of 2015-2019 is examined to show the frequency and distribution of flash floods associated with these heavy rainfall events in Turkey. The monthly distribution of lightning observations for the period of 2015 and 2019 is also studied to release the relationship between heavy rainfall events and lightning ...
Advancement of Satellite Rainfall Applications for Hydrologic Modeling with Emphasis on Flood Monitoring (FLOODSAT)
Yılmaz, Koray Kamil(2014-3-31)
"Floods are the most widespread and frequent natural disaster responsible for significant loss of lives and property each year. The European Environmental Agency estimated that floods in Europe between 1998 and 2002 caused about 700 deaths, the displacement of about half a million people and at least 25 billion Euros in insured economic losses. As such, one of the four priority areas in FP7 has been identified as triggering factors and forecasting and mitigation strategies for natural hazards. Flood early ...
Operation of the water control structures
Bozkurt, Okan Çağrı; Merzi, Nuri; Akyürek, Sevda Zuhal; Department of Civil Engineering (2013)
Floods are one of the most important natural disasters regarding damages caused by them. Major reasons of huge damages of floods are unplanned urbanization, narrowing of river beds and incorrect operation of water control structures. Geographic Information Systems (GIS) can provide important tools to be used in flood modeling studies. In this study, Lake Mogan, Lake Eymir and İncesu Detention Pond subbasins are studied for flooding events within GIS framework. These subbasins are important catchment areas o...
Evaluation of a Hydro-Meteorological Model System for Flood Forecasting of a Mediterranean Basin in Turkey
Kılıçarslan, Berina; Duzenli, Eren; Pilatin, Heves; Yücel, İsmail; Yılmaz, Mustafa Tuğrul (null; 2020-05-08)
Floods, which are considered as one of the most destructive extreme weather events, are being more severe issues with changing climate, and they are threatening both human life and property. To address flood hazard issues, this study evaluates the application of a hydro-meteorological model system as an early warning system approach. The Weather Research and Forecasting Hydrological model system (WRF-Hydro), a fully-distributed, multi-physics, multi-scale hydrologic model, has the capability of accurately c...
Citation Formats
T. Tu et al., “Coupling hydroclimate-hydraulic-sedimentation models to estimate flood inundation and sediment transport during extreme flood events under a changing climate,” SCIENCE OF THE TOTAL ENVIRONMENT, vol. 740, pp. 0–0, 2020, Accessed: 00, 2022. [Online]. Available: https://hdl.handle.net/11511/100267.