The SHiP experiment at the proposed CERN SPS Beam Dump Facility

2022-05-01
Ahdida, C.
Akmete, A.
Albanese, R.
Alt, J.
Alexandrov, A.
Anokhina, A.
Aoki, S.
Arduini, G.
Atkin, E.
Azorskiy, N.
Back, J. J.
Bagulya, A.
Baaltasar Dos Santos, F.
Baranov, A.
Bardou, F.
Barker, G. J.
Battistin, M.
Bauche, J.
Bay, A.
Bayliss, V.
Berdnikov, A. Y.
Berdnikov, Y. A.
Betancourt, C.
Bezshyiko, I.
Bezshyyko, O.
Bick, D.
Bieschke, S.
Blanco, A.
Boehm, J.
Bogomilov, M.
Boiarska, I.
Bondarenko, K.
Bonivento, W. M.
Borburgh, J.
Boyarsky, A.
Brenner, R.
Breton, D.
Brignoli, A.
Buescher, V.
Buonaura, A.
Buontempo, S.
Cadeddu, S.
Calviani, M.
Campanelli, M.
Casolino, M.
Charitonidis, N.
Chau, P.
Chauveau, J.
Chepurnov, A.
Chernyavskiy, M.
Choi, K. -Y.
Chumakov, A.
Climescu, M.
Conaboy, A.
Congedo, L.
Cornelis, K.
Cristinziani, M.
Crupano, A.
Dallavalle, G. M.
Datwyler, A.
D'Ambrosio, N.
D'Appollonio, G.
de Asmundis, R.
De Carvalho Saraiva, J.
De Lellis, G.
de Magistris, M.
De Roeck, A.
De Serio, M.
De Simone, D.
Dedenko, L.
Dergachev, P.
Di Crescenzo, A.
Di Giulio, L.
Dib, C.
Dijkstra, H.
Dmitrenko, V.
Dougherty, L. A.
Dolmatov, A.
Donskov, S.
Drohan, V.
Dubreuil, A.
Durhan, O.
Ehlert, M.
Elikkaya, E.
Enik, T.
Etenko, A.
Fedin, O.
Fedotovs, F.
Ferrillo, M.
Ferro-Luzzi, M.
Filippov, K.
Fini, R. A.
Fischer, H.
Fonte, P.
Franco, C.
Fraser, M.
Fresa, R.
Froeschl, R.
Fukuda, T.
Galati, G.
Gall, J.
Gatignon, L.
Gavrilov, G.
Gentile, V.
Goddard, B.
Golinka-Bezshyyko, L.
Golovatiuk, A.
Golovtsov, V.
Golubkov, D.
Golutvin, A.
Gorbounov, P.
Gorbunov, D.
Gorbunov, S.
Gorkavenko, V.
Gorshenkov, M.
Grachev, V.
Grandchamp, A. L.
Graverini, E.
Grenard, J. -L.
Grenier, D.
Grichine, V.
Gruzinskii, N.
Güler, Ali Murat
Guz, Yu.
Haefeli, G. J.
Hagner, C.
Hakobyan, H.
Harris, I. W.
van Herwijnen, E.
Hessler, C.
Hollnagel, A.
Hosseini, B.
Hushchyn, M.
Iaselli, G.
Iuliano, A.
Jacobsson, R.
Jokovic, D.
Jonker, M.
Kadenko, I.
Kain, V.
Kaiser, B.
Kamiscioglu, C.
Karpenkov, D.
Kershaw, K.
Khabibullin, M.
Khalikov, E.
Khaustov, G.
Khoriauli, G.
Khotyantsev, A.
Kim, Y. G.
Kim, V.
Kitagawa, N.
Ko, J. -W.
Kodama, K.
Kolesnikov, A.
Kolev, D. I.
Kolosov, V.
Komatsu, M.
Kono, A.
Konovalova, N.
Kormannshaus, S.
Korol, I.
Korol'ko, I.
Korzenev, A.
Koukovini Platia, E.
Kovalenko, S.
Krasilnikova, I.
Kudenko, Y.
Kurbatov, E.
Kurbatov, P.
Kurochka, V.
Kuznetsova, E.
Lacker, H. M.
Lamont, M.
Lantwin, O.
Lauria, A.
Lee, K. S.
Lee, K. Y.
Leonardo, N.
Levy, J. -M.
Loschiavo, V. P.
Lopes, L.
Lopez Sola, E.
Lyons, F.
Lyubovitskij, V.
Maalmi, J.
Magnan, A. -M.
Maleev, V.
Malinin, A.
Manabe, Y.
Managadze, A. K.
Manfredi, M.
Marsh, S.
Marshall, A. M.
Mefodev, A.
Mermod, P.
Miano, A.
Mikado, S.
Mikhaylov, Yu.
Mikulenko, A.
Milstead, D. A.
Mineev, O.
Montesi, M. C.
Morishima, K.
Movchan, S.
Muttoni, Y.
Naganawa, N.
Nakamura, M.
Nakano, T.
Nasybulin, S.
Ninin, P.
Nishio, A.
Obinyakov, B.
Ogawa, S.
Okateva, N.
Osborne, J.
Ovchynnikov, M.
Owtscharenko, N.
Owen, P. H.
Pacholek, P.
Park, B. D.
Pastore, A.
Patel, M.
Pereyma, D.
Perillo-Marcone, A.
Petkov, G. L.
Petridis, K.
Petrov, A.
Podgrudkov, D.
Poliakov, V.
Polukhina, N.
Prieto Prieto, J.
Prokudin, M.
Prota, A.
Quercia, A.
Rademakers, A.
Rakai, A.
Ratnikov, F.
Rawlings, T.
Redi, F.
Reghunath, A.
Ricciardi, S.
Rinaldesi, M.
Rodin, Volodymyr
Rodin, Viktor
Robbe, P.
Rodrigues Cavalcante, A. B.
Roganova, T.
Rokujo, H.
Rosa, G.
Ruchayskiy, O.
Ruf, T.
Samoylenko, V.
Samsonov, V.
Sanchez Galan, F.
Santos Diaz, P.
Sanz Ull, A.
Sato, O.
Savchenko, E. S.
Schliwinski, J. S.
Schmidt-Parzefall, W.
Schumann, M.
Serra, N.
Sgobba, S.
Shadura, O.
Shakin, A.
Shaposhnikov, M.
Shatalov, P.
Shchedrina, T.
Shchutska, L.
Shevchenko, V.
Shibuya, H.
Shihora, L.
Shirobokov, S.
Shustov, A.
Silverstein, S. B.
Simone, S.
Simoniello, R.
Skorokhvatov, M.
Smirnov, S.
Soares, G.
Sohn, J. Y.
Sokolenko, A.
Solodko, E.
Starkov, N.
Stoel, L.
Stramaglia, M. E.
Sukhonos, D.
Suzuki, Y.
Takahashi, S.
Tastet, J. L.
Teterin, P.
Than Naing, S.
Timiryasov, I.
Tioukov, V.
Tommasini, D.
Torii, M.
Treille, D.
Tsenov, R.
Ulin, S.
Ursov, E.
Ustyuzhanin, A.
Uteshev, Z.
Uvarov, L.
Vankova-Kirilova, G.
Vannucci, F.
Venkova, P.
Venturi, V.
Vidulin, I.
Vilchinski, S.
Vincke, Heinz
Vincke, Helmut
Visone, C.
Vlasik, K.
Volkov, A.
Voronkov, R.
van Waasen, S.
Wanke, R.
Wertelaers, P.
Williams, O.
Woo, J. -K.
Wurm, M.
Xella, S.
Yilmaz, D.
Yilmazer, A. U.
Yoon, C. S.
Zaytsev, Yu.
Zelenov, A.
Zimmerman, J.
The Search for Hidden Particles (SHiP) Collaboration has proposed a general-purpose experimental facility operating in beam-dump mode at the CERN SPS accelerator to search for light, feebly interacting particles. In the baseline configuration, the SHiP experiment incorporates two complementary detectors. The upstream detector is designed for recoil signatures of light dark matter (LDM) scattering and for neutrino physics, in particular with tau neutrinos. It consists of a spectrometer magnet housing a layered detector system with high-density LDM/neutrino target plates, emulsion-film technology and electronic high-precision tracking. The total detector target mass amounts to about eight tonnes. The downstream detector system aims at measuring visible decays of feebly interacting particles to both fully reconstructed final states and to partially reconstructed final states with neutrinos, in a nearly background-free environment. The detector consists of a 50 m long decay volume under vacuum followed by a spectrometer and particle identification system with a rectangular acceptance of 5 m in width and 10 m in height. Using the high-intensity beam of 400 GeV protons, the experiment aims at profiting from the 4 x 10(19) protons per year that are currently unexploited at the SPS, over a period of 5-10 years. This allows probing dark photons, dark scalars and pseudo-scalars, and heavy neutral leptons with GeV-scale masses in the direct searches at sensitivities that largely exceed those of existing and projected experiments. The sensitivity to light dark matter through scattering reaches well below the dark matter relic density limits in the range from a few MeV/c(2) up to 100 MeV-scale masses, and it will be possible to study tau neutrino interactions with unprecedented statistics. This paper describes the SHiP experiment baseline setup and the detector systems, together with performance results from prototypes in test beams, as it was prepared for the 2020 Update of the European Strategy for Particle Physics. The expected detector performance from simulation is summarised at the end.
EUROPEAN PHYSICAL JOURNAL C

Suggestions

The experimental facility for the Search for Hidden Particles at the CERN SPS
Ahdida, C.; et. al. (IOP Publishing, 2019-03-01)
The Search for Hidden Particles (SHiP) Collaboration has shown that the CERN SPS accelerator with its 400 GeV/c proton beam offers a unique opportunity to explore the Hidden Sector [1-3]. The proposed experiment is an intensity frontier experiment which is capable of searching for hidden particles through both visible decays and through scattering signatures from recoil of electrons or nuclei. The high-intensity experimental facility developed by the SHiP Collaboration is based on a number of key features a...
The magnet of the scattering and neutrino detector for the SHiP experiment at CERN
Ahdida, C.; et. al. (2020-01-01)
The Search for Hidden Particles (SHiP) experiment proposal at CERN demands a dedicated dipole magnet for its scattering and neutrino detector. This requires a very large volume to be uniformly magnetized at B > 1.2 T, with constraints regarding the inner instrumented volume as well as the external region, where no massive structures are allowed and only an extremely low stray field is admitted. In this paper we report the main technical challenges and the relevant design options providing a comprehensive de...
The silicon microstrip sensors of the ATLAS semiconductor tracker
Ahmad, A.; et. al. (2007-07-21)
This paper describes the AC-coupled, single-sided, p-in-n silicon microstrip sensors used in the Semiconductor Tracker (SCT) of the ATLAS experiment at the CERN Large Hadron Collider (LHC). The sensor requirements, specifications and designs are discussed, together with the qualification and quality assurance procedures adopted for their production. The measured sensor performance is presented, both initially and after irradiation to the fluence anticipated after 10 years of LHC operation. The sensors are n...
The ATLAS Data Acquisition and High Level Trigger system
Abolins, M.; et. al. (IOP Publishing, 2016-06-01)
This paper describes the data acquisition and high level trigger system of the ATLAS experiment at the Large Hadron Collider at CERN, as deployed during Run 1. Data flow as well as control, configuration and monitoring aspects are addressed. An overview of the functionality of the system and of its performance is presented and design choices are discussed.
The barrel modules of the ATLAS semiconductor tracker
Abdesselam, A.; et. al. (2006-12-01)
This paper describes the silicon microstrip modules in the barrel section of the SemiConductor Tracker (SCT) of the ATLAS experiment at the CERN Large Hadron Collider (LHC). The module requirements, components and assembly techniques are given, as well as first results of the module performance on the fully assembled barrels that make up the detector being installed in the ATLAS experiment.
Citation Formats
C. Ahdida et al., “The SHiP experiment at the proposed CERN SPS Beam Dump Facility,” EUROPEAN PHYSICAL JOURNAL C, vol. 82, no. 5, pp. 0–0, 2022, Accessed: 00, 2022. [Online]. Available: https://hdl.handle.net/11511/100963.