Clifford-based spectral action and renormalization group analysis of the gauge couplings

Download
2019-4-01
Aydemir, Ufuk
The Spectral Action Principle in noncommutative geometry derives the actions of the Standard Model and General Relativity (along with several other gravitational terms) by reconciling them in a geometric setting, and hence offers an explanation for their common origin. However, one of the requirements in the minimal formalism, unification of the gauge coupling constants, is not satisfied, since the basic construction does not introduce anything new that can change the renormalization group (RG) running of the Standard Model. On the other hand, it has been recently argued that incorporating structure of the Clifford algebra into the finite part of the spectral triple, the main object that encodes the complete information of a noncommutative space, gives rise to five additional scalar fields in the basic framework. We investigate whether these scalars can help to achieve unification. We perform a RG analysis at the one-loop level, allowing possible mass values of these scalars to float from the electroweak scale to the putative unification scale. We show that out of twenty configurations of mass hierarchy in total, there does not exist even a single case that can lead to unification. In consequence, we confirm that the spectral action formalism requires a model-construction scheme beyond the (modified) minimal framework.
EUROPEAN PHYSICAL JOURNAL C

Suggestions

Equivariant Reduction of Gauge Theories over Fuzzy Extra Dimensions
Kürkcüoğlu, Seçkin (IOP Publishing, 2012-2-8)
In SU(N) Yang-Mills theories on a manifold M, which are suitably coupled to a set of scalars, fuzzy spheres may be generated as extra dimensions by spontaneous symmetry breaking. This process results in gauge theories over the product space of the manifold M and the fuzzy spheres with smaller gauge groups. Here we present the SU(2)- and SU(2) x SU(2)-equivariant parametrization of U(2) and U(4) gauge fields on S-F(2), and S-F(2), x S-F(2), respectively and outline the dimensional reduction of these theories...
Spectra, vacua, and the unitarity of Lovelock gravity in D-dimensional AdS spacetimes
Sisman, Tahsin Cagri; Gullu, Ibrahim; Tekin, Bayram (2012-08-24)
We explicitly confirm the expectation that generic Lovelock gravity in D dimensions has a unitary massless spin-2 excitation around any one of its constant curvature vacua just like the cosmological Einstein gravity. The propagator of the theory reduces to that of Einstein's gravity, but scattering amplitudes must be computed with an effective Newton's constant which we provide. Tree-level unitarity imposes a single constraint on the parameters of the theory yielding a wide range of unitary region. As an ex...
Entangled Harmonic Oscillators and Space-Time Entanglement
Başkal, Sibel; Kim, Young S.; Noz, Marilyn E. (MDPI AG, 2016-6-28)
The mathematical basis for the Gaussian entanglement is discussed in detail, as well as its implications in the internal space-time structure of relativistic extended particles. It is shown that the Gaussian entanglement shares the same set of mathematical formulas with the harmonic oscillator in the Lorentz-covariant world. It is thus possible to transfer the concept of entanglement to the Lorentz-covariant picture of the bound state, which requires both space and time separations between two constituent p...
Finite mass gravitating Yang monopoles
CEBECİ, HAKAN; Sarıoğlu, Bahtiyar Özgür; Tekin, Bayram (American Physical Society (APS), 2008-12-01)
We show that gravity cures the infrared divergence of the Yang monopole when a proper definition of conserved quantities in curved backgrounds is used, i.e. the gravitating Yang monopole in cosmological Einstein theory has a finite mass in generic even dimensions (including time). In addition, we find exact Yang-monopole type solutions in the cosmological Einstein-Gauss-Bonnet-Yang-Mills theory and briefly discuss their properties.
Kerr black holes and their generalizations
Cebeci, Hakan; Karasu, Emine Ayşe; Dereli, Tekin; Department of Physics (2003)
The scalar tensor theory of gravitation is constructed in D dimensions in all possible geometries of spacetime. In Riemannian geometry, theory of gravitation involves a spacetime metric g with a torsion-free, metric compatible connection structure. If the geometry is non-Riemannian, then the gauge theory of gravitation can be constructed with a spacetime metric g and a connection structure with torsion. In non-Riemannian theory, connections may be metric compatible or non-metric compatible. It is shown that...
Citation Formats
U. Aydemir, “Clifford-based spectral action and renormalization group analysis of the gauge couplings,” EUROPEAN PHYSICAL JOURNAL C, vol. 79, no. 4, pp. 0–0, 2019, Accessed: 00, 2022. [Online]. Available: https://hdl.handle.net/11511/101030.