Synchronization of chaos in semiconductor gas discharge model with local mean energy approximation

Akhmet, Marat
Yeşil, Cihan
Başkan, Kağan
© 2022The delta synchronization is a useful method to analyze appearance of chaotic synchronization in gas discharge systems. In recent studies, the generalized synchronization method has been implemented in various gas discharge systems. However, synchronization is not detected with this conventional method. In our previous study, we introduced the delta synchronization method and applied it to the gas discharge-semiconductor system (GDSS) via the one-dimensional ‘simple’ fluid model approach. In the present study, we implement this method in the more detailed (in terms of plasma chemical reactions and treatment of the electron transport) fluid model, namely the ‘extended’ fluid model or ‘local mean energy approximation’ model. The description of the GDSS model is given, and a bifurcation diagram demonstrates the system's transition to the chaotic regime. The unpredictable motion, which proves the existence of Poincaré chaos, and the delta synchronized motion are confirmed by the numerical simulations, and corresponding algorithms are given. The time sequences corresponding to the unpredictability and delta synchronization are presented in tables. For consistency, the absence of generalized synchronization is also shown via the auxiliary system approach. The numerical characteristics indicating the degrees of chaos and synchronization are described and implemented in the analysis. These features are also used to compare our results to the simpler model.
Chaos, Solitons and Fractals


Particle in cell/Monte Carlo collision analysis of the problem of identification of impurities in the gas by the plasma electron spectroscopy method
SARIKAYA, C. Kusoglu; Rafatov, İsmail; KUDRYAVTSEV, A. A. (2016-06-01)
The work deals with the Particle in Cell/Monte Carlo Collision (PIC/MCC) analysis of the problem of detection and identification of impurities in the nonlocal plasma of gas discharge using the Plasma Electron Spectroscopy (PLES) method. For this purpose, 1d3v PIC/MCC code for numerical simulation of glow discharge with nonlocal electron energy distribution function is developed. The elastic, excitation, and ionization collisions between electron-neutral pairs and isotropic scattering and charge exchange col...
Numerical analysis of plasma properties in the glow discharge: accuracy and applicability of simple and extended fluid models
Kaymazlar, Koray; Rafatov, İsmail; Department of Physics (2017)
The work deals with numerical investigation of physical processes in the gas discharge plasma. Numerical models are based on the fluid description of plasma, with drift-diffusion approximation for charged particle fluxes. First, we developed a “simple” fluid model, consisted of continuity equations for electrons and ions, coupled to Poisson equation for electric field. Next, we extended this model by incorporating the electron Boltzmann equation module, such that the electron transport parameters (mobility ...
Simulations on glow discharge: development and validation of one-dimensional kinetic model by particle in cell/monte carlo collision method
Tiryaki, Özgecan; Çakır, Serhat; Department of Physics (2019)
Numerical codes for glow discharge plasma simulations were developed by using Particle in Cell/Monte Carlo Collision (PIC/MCC) method. The model is one-dimensional in coordinate space and three-dimensional in velocity space (1d3v). A modification of Direct Simulation Monte Carlo (DSMC) method known as null-collision method was used for particle collisions. MPI and sub-cycling were used for speed up. The code was validated using benchmarks for capacitively coupled helium discharges and tested with three-dime...
Isovector response of nuclear matter at finite temperature
Ayik, S.; BOZKURT, Kutsal; Gokalp, A.; Yılmaz Tüzün, Özgül (2008-06-01)
The dipole response function of nuclear matter at zero and finite temperatures is investigated in an extended RPA approach by including collisional damping mechanism and coherent damping due to particle-phonon coupling. Calculations are carried out for nuclear dipole vibrations by employing the Steinwedel-Jensen model and compared with experimental results for Sn-120 and Pb-208.
Quantal description of nucleon exchange in a stochastic mean-field approach
Ayik, S.; YILMAZ TÜZÜN, ÖZGÜL; YILMAZ, BÜLENT; Umar, A. S.; GÖKALP, AHMET; Turan, Gürsevil; Lacroix, D. (2015-05-04)
The nucleon exchange mechanism is investigated in central collisions of symmetric heavy ions in the basis of the stochastic mean-field approach. Quantal diffusion coefficients for nucleon exchange are calculated by including non-Markovian effects and shell structure. Variances of fragment mass distributions are calculated in central collisions of Ca-40 + Ca-40, Ca-48 + Ca-48, and N-56 i+ Ni-56 systems.
Citation Formats
M. Akhmet, C. Yeşil, and K. Başkan, “Synchronization of chaos in semiconductor gas discharge model with local mean energy approximation,” Chaos, Solitons and Fractals, vol. 167, pp. 0–0, 2023, Accessed: 00, 2023. [Online]. Available: