Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Spatial stabilization of Townsend and glow discharges with a semiconducting cathode
Date
1996-03-14
Author
Salamov, BG
Ellialtioglu, S
Akınoğlu, Bülent Gültekin
Lebedeva, NN
Patriskii, LG
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
3
views
0
downloads
The physical processes determining the functions of an ionization system and especially the discharge stabilization by the distributed resistance of a semiconducting cathode in such a system are studied. The current-voltage (I-U) characteristics of the system with a semiconducting GaAs cathode are obtained experimentally as functions of the gap pressure P (16-760 Torr) and inter-electrode distance d (10 mu m to 5 mm), which are varied for the first time over very wide ranges. The experiments showed that the presence of the distributed resistance affects the passage of the discharge current so that the discharge glows uniformly throughout the cathode surface and is not divided into separate filaments. The loss of stability was primarily due to the formation of a space charge of positive ions in the discharge gap which changed the discharge from the Townsend to the glow type.
Subject Keywords
Acoustics and Ultrasonics
,
Electronic, Optical and Magnetic Materials
,
Surfaces, Coatings and Films
,
Condensed Matter Physics
URI
https://hdl.handle.net/11511/38018
Journal
JOURNAL OF PHYSICS D-APPLIED PHYSICS
DOI
https://doi.org/10.1088/0022-3727/29/3/022
Collections
Department of Physics, Article