Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Heuristic Resource Reservation Policies for Public Clouds in the IoT Era
Download
index.pdf
Date
2022-12-01
Author
Gül, Ömer Melih
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
177
views
69
downloads
Cite This
With the advances in the IoT era, the number of wireless sensor devices has been growing rapidly. This increasing number gives rise to more complex networks where more complex tasks can be executed by utilizing more computational resources from the public clouds. Cloud service providers use various pricing models for their offered services. Some models are appropriate for the cloud service user’s short-term requirements whereas the other models are appropriate for the long-term requirements of cloud service users. Reservation-based price models are suitable for long-term requirements of cloud service users. We used the pricing schemes with spot and reserved instances. Reserved instances support a hybrid cost model with fixed reservation costs that vary with contract duration and an hourly usage charge which is lower than the charge of the spot instances. Optimizing resources to be reserved requires sufficient research effort. Recent algorithms proposed for this problem are generally based on integer programming problems, so they do not have polynomial time complexity. In this work, heuristic-based polynomial time policies are proposed for this problem. It is exhibited that the cost for the cloud service user which uses our approach is comparable to optimal solutions, i.e., it is near-optimal.
Subject Keywords
cloud computing
,
cost optimization
,
public cloud
,
resource reservation
URI
https://hdl.handle.net/11511/101806
Journal
Sensors
DOI
https://doi.org/10.3390/s22239034
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
A Cloud Based Architecture for Distributed Real Time Processing of Continuous Queries
Gökalp, Mert Onuralp; Koçyiğit, Altan; Eren, Pekin Erhan (2015-08-28)
With the rapid pace of technological advancements in smart device, sensor and actuator technologies, the Internet of Things (IoT) domain has received significant attention. These advances have brought us closer to the ubiquitous computing vision. However, in order to fully realize this vision, devices and applications should rapidly adapt to the changes in the environment and other nearby devices. Most of the existing applications store collected data in a data store and allow users to query stored data to ...
A Cloud Based Architecture for Distributed Real Time Processing of Continuous Queries
Gökalp, Mert Onuralp; Koçyiğit, Altan; Department of Information Systems (2015)
The technological advancements in Internet of Things (IoT) domain have enabled us to reshape the physical world through smart devices, sensors and actuators. The data collected by IoT devices has become a valuable asset to extract knowledge about the environment and other nearby devices. Existing IoT applications mostly store collected data in a central server and allow users to query stored data to notice and react to changes in the environment. Usually cloud and big data technologies are utilized in those...
A Self-Cloning Agents Based Model for High-Performance Mobile-Cloud Computing
Angın, Pelin; Jin, Zhongjun (2015-07-02)
The rise of the mobile-cloud computing paradigm in recent years has enabled mobile devices with processing power and battery life limitations to achieve complex tasks in real-time. While mobile-cloud computing is promising to overcome the limitations of mobile devices for real-time computing, the lack of frameworks compatible with standard technologies and techniques for dynamic performance estimation and program component relocation makes it harder to adopt mobile-cloud computing at large. Most of the avai...
An Effective Forest Fire Detection Framework Using Heterogeneous Wireless Multimedia Sensor Networks
Kizilkaya, Burak; Ever, Enver; Yatbaz, Hakan Yekta; Yazıcı, Adnan (2022-05-01)
With improvements in the area of Internet of Things (IoT), surveillance systems have recently become more accessible. At the same time, optimizing the energy requirements of smart sensors, especially for data transmission, has always been very important and the energy efficiency of IoT systems has been the subject of numerous studies. For environmental monitoring scenarios, it is possible to extract more accurate information using smart multimedia sensors. However, multimedia data transmission is an expensi...
Real-time intrusion detection and prevention system for SDN-based IoT networks
Sarıça, Alper Kaan; Angın, Pelin; Department of Computer Engineering (2021-9)
The significant advances in wireless networks with the 5G networks have made possible a variety of new IoT use cases. 5G and beyond networks will significantly rely on network virtualization technologies such as SDN and NFV. The prevalence of IoT and the large attack surface it has created calls for SDN-based intelligent security solutions that achieve real-time, automated intrusion detection and mitigation. In this thesis, we propose a real-time intrusion detection and mitigation system for SDN, which aims...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Ö. M. Gül, “Heuristic Resource Reservation Policies for Public Clouds in the IoT Era,”
Sensors
, vol. 22, no. 23, pp. 0–0, 2022, Accessed: 00, 2023. [Online]. Available: https://hdl.handle.net/11511/101806.