Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
An Effective Forest Fire Detection Framework Using Heterogeneous Wireless Multimedia Sensor Networks
Date
2022-05-01
Author
Kizilkaya, Burak
Ever, Enver
Yatbaz, Hakan Yekta
Yazıcı, Adnan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
288
views
0
downloads
Cite This
With improvements in the area of Internet of Things (IoT), surveillance systems have recently become more accessible. At the same time, optimizing the energy requirements of smart sensors, especially for data transmission, has always been very important and the energy efficiency of IoT systems has been the subject of numerous studies. For environmental monitoring scenarios, it is possible to extract more accurate information using smart multimedia sensors. However, multimedia data transmission is an expensive operation. In this study, a novel hierarchical approach is presented for the detection of forest fires. The proposed framework introduces a new approach in which multimedia and scalar sensors are used hierarchically to minimize the transmission of visual data. A lightweight deep learning model is also developed for devices at the edge of the network to improve detection accuracy and reduce the traffic between the edge devices and the sink. The framework is evaluated using a real testbed, network simulations, and 10-fold cross-validation in terms of energy efficiency and detection accuracy. Based on the results of our experiments, the validation accuracy of the proposed system is 98.28%, and the energy saving is 29.94%. The proposed deep learning model's validation accuracy is very close to the accuracy of the best performing architectures when the existing studies and lightweight architectures are considered. In terms of suitability for edge computing, the proposed approach is superior to the existing ones with reduced computational requirements and model size.
Subject Keywords
IoT
,
WMSNs
,
deep learning
,
edge computing
,
energy efficiency
,
heterogeneous WMSN architecture
,
ENERGY-EFFICIENT
,
RASPBERRY PI
,
CHALLENGES
URI
https://hdl.handle.net/11511/97129
Journal
ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS
DOI
https://doi.org/10.1145/3473037
Collections
Department of Computer Engineering, Article
Suggestions
OpenMETU
Core
An energy efficient hierarchical approach using multimedia and scalar sensors for emergency services
Kızılkaya, Burak; Ever, Enver; Sustainable Environment and Energy Systems (2019-7)
Recently, environment monitoring and detection systems became more accessible with the help of IoT applications. Furthermore, connecting smart devices makes monitoring applications more accurate and reliable. On the other hand, optimizing the energy requirement of smart sensors especially while transmitting data has always been very important, and there are different applications to create energy efficient IoT systems. Detailed analysis of lifetimes of various types of sensors (survival analysis) has theref...
Explainable Security in SDN-Based IoT Networks
Sarica, Alper Kaan; Angın, Pelin (2020-12-01)
The significant advances in wireless networks in the past decade have made a variety of Internet of Things (IoT) use cases possible, greatly facilitating many operations in our daily lives. IoT is only expected to grow with 5G and beyond networks, which will primarily rely on software-defined networking (SDN) and network functions virtualization for achieving the promised quality of service. The prevalence of IoT and the large attack surface that it has created calls for SDN-based intelligent security solut...
A Cloud Based Architecture for Distributed Real Time Processing of Continuous Queries
Gökalp, Mert Onuralp; Koçyiğit, Altan; Department of Information Systems (2015)
The technological advancements in Internet of Things (IoT) domain have enabled us to reshape the physical world through smart devices, sensors and actuators. The data collected by IoT devices has become a valuable asset to extract knowledge about the environment and other nearby devices. Existing IoT applications mostly store collected data in a central server and allow users to query stored data to notice and react to changes in the environment. Usually cloud and big data technologies are utilized in those...
A Cloud Based Architecture for Distributed Real Time Processing of Continuous Queries
Gökalp, Mert Onuralp; Koçyiğit, Altan; Eren, Pekin Erhan (2015-08-28)
With the rapid pace of technological advancements in smart device, sensor and actuator technologies, the Internet of Things (IoT) domain has received significant attention. These advances have brought us closer to the ubiquitous computing vision. However, in order to fully realize this vision, devices and applications should rapidly adapt to the changes in the environment and other nearby devices. Most of the existing applications store collected data in a data store and allow users to query stored data to ...
A Novel SDN Dataset for Intrusion Detection in IoT Networks
Sarica, Alper Kaan; Angın, Pelin (2020-11-04)
The number of Internet of Things (IoT) devices and the use cases they aim to support have increased sharply in the past decade with the rapid developments in wireless networking infrastructures. Despite many advantages, the widespread use of IoT has also created a large attack surface frequently exploited by cyber criminals, requiring real-time, automated detection and mitigation of various attacks in the high-volume network traffic generated. Software-defined networking (SDN) and machine learning (ML) base...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Kizilkaya, E. Ever, H. Y. Yatbaz, and A. Yazıcı, “An Effective Forest Fire Detection Framework Using Heterogeneous Wireless Multimedia Sensor Networks,”
ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS
, vol. 18, no. 2, pp. 0–0, 2022, Accessed: 00, 2022. [Online]. Available: https://hdl.handle.net/11511/97129.