Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Classification of some quadrinomials over finite fields of odd characteristic
Date
2023-03-01
Author
Özbudak, Ferruh
Gulmez Temur, B. or Temur
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
208
views
0
downloads
Cite This
In this paper, we completely determine all necessary and sufficient conditions such that the polynomialf(x)=x3+axq+2+bx2q+1+cx3q" role="presentation" style="margin: 0px; padding: 0px; display: inline-block; line-height: normal; font-size: 16.2px; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">�(�)=�3+���+2+��2�+1+��3�, wherea,b,c∈Fq⁎" role="presentation" style="margin: 0px; padding: 0px; display: inline-block; line-height: normal; font-size: 16.2px; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">⁎�,�,�∈��⁎, is a permutation quadrinomial ofFq2" role="presentation" style="margin: 0px; padding: 0px; display: inline-block; line-height: normal; font-size: 16.2px; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">��2over any finite field of odd characteristic. This quadrinomial has been studied first in[25]by Tu, Zeng and Helleseth, later in[24]Tu, Liu and Zeng revisited these quadrinomials and they proposed a more comprehensive characterization of the coefficients that results with new permutation quadrinomials, wherechar(Fq)=2" role="presentation" style="margin: 0px; padding: 0px; display: inline-block; line-height: normal; font-size: 16.2px; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">�ℎ��(��)=2and finally, in[16], Li, Qu, Li and Chen proved that the sufficient condition given in[24]is also necessary and thus completed the solution in even characteristic case. In[6]Gupta studied the permutation properties of the polynomialx3+axq+2+bx2q+1+cx3q" role="presentation" style="margin: 0px; padding: 0px; display: inline-block; line-height: normal; font-size: 16.2px; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">�3+���+2+��2�+1+��3�, wherechar(Fq)=3,5" role="presentation" style="margin: 0px; padding: 0px; display: inline-block; line-height: normal; font-size: 16.2px; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">�ℎ��(��)=3,5anda,b,c∈Fq⁎" role="presentation" style="margin: 0px; padding: 0px; display: inline-block; line-height: normal; font-size: 16.2px; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">⁎�,�,�∈��⁎and proposed some new classes of permutation quadrinomials ofFq2" role="presentation" style="margin: 0px; padding: 0px; display: inline-block; line-height: normal; font-size: 16.2px; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">��2.In particular, in this paper we classify all permutation polynomials ofFq2" role="presentation" style="margin: 0px; padding: 0px; display: inline-block; line-height: normal; font-size: 16.2px; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">��2of the formf(x)=x3+axq+2+bx2q+1+cx3q" role="presentation" style="margin: 0px; padding: 0px; display: inline-block; line-height: normal; font-size: 16.2px; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">�(�)=�3+���+2+��2�+1+��3�, wherea,b,c∈Fq⁎" role="presentation" style="margin: 0px; padding: 0px; display: inline-block; line-height: normal; font-size: 16.2px; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">⁎�,�,�∈��⁎, over all finite fields of odd characteristic and obtain several new classes of such permutation quadrinomials.
URI
https://hdl.handle.net/11511/102390
Journal
FINITE FIELDS AND THEIR APPLICATIONS
DOI
https://doi.org/10.1016/j.ffa.2022.102158
Collections
Department of Mathematics, Article
Suggestions
OpenMETU
Core
Classification of skew-symmetric forms corresponding to cluster algebras with principal coefficients
Mazı, Sedanur; Seven, Ahmet İrfan; Department of Mathematics (2016)
In this thesis, we study algebraic and combinatorial properties of the skew-symmetric forms that correspond to cluster algebras with principal coefficients. We obtain a classification of these forms under congruence and compute the Arf invariants for finite types.
Topology of the complement of a real algebraic curve in ℂP2
Finashin, Sergey (1984-07-01)
In this paper we consider the problem of the disposition of the set of points of a nonsingular real algebraic curve of given degree in ℂP2. The homotopy description of the complement of such a curve in ℂP2 is the first step toward solving the problem of disposition mentioned. In the case of an arbitrary curve we are able to prove that the complement indicated is homotopy equivalent with a three-dimensional cell complex of special form. For a certain class of curves the complex turns out to be two-dimensiona...
Stability of differential equations with piecewise constant arguments of generalized type
Akhmet, Marat (Elsevier BV, 2008-02-15)
In this paper we continue to consider differential equations with piecewise constant argument of generalized type (EPCAG) [M.U. Akhmet, Integral manifolds of differential equations with piecewise constant argument of generalized type, Nonlinear Anal. TMA 66 (2007) 367-383]. A deviating function of a new form is introduced. The linear and quasilinear systems are under discussion. The structure of the sets of solutions is specified. Necessary and Sufficient conditions for stability of the zero Solution are ob...
Multiplication modules which are distributive
Erdoğdu, Vahap (Elsevier BV, 1988-10)
We prove results which include necessary and sufficient conditions for a multiplication module to be distributive
Characterisation and enumeration of a class of semi bent quadratic Boolean functions
KOÇAK, Neşe; Koçak, Onur Ozan; Özbudak, Ferruh; SAYGI, ZÜLFÜKAR (2015-01-01)
In this paper, we consider semi-bentness of quadratic Boolean functions defined for even n and give the characterisation of these functions. Up to our knowledge, semi-bentness of this class has not been investigated before and we proved that semi-bent functions of this form exist only for 6|n. Furthermore, we present a method for enumeration of semi-bent and bent functions in certain classes. Using this method we find the exact number of semi-bent functions of this form. Moreover, we complete some previous ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
F. Özbudak and B. o. T. Gulmez Temur, “Classification of some quadrinomials over finite fields of odd characteristic,”
FINITE FIELDS AND THEIR APPLICATIONS
, vol. 87, pp. 102158–102158, 2023, Accessed: 00, 2023. [Online]. Available: https://hdl.handle.net/11511/102390.