8-MW wind turbine tower computational shell buckling benchmark. Part 1: An international ‘round-robin’ exercise

2023-06-01
Sadowski, Adam J.
Seidel, Marc
Al-Lawati, Hussain
Azizi, Esmaeil
Balscheit, Hagen
Böhm, Manuela
Chen, Lei
van Dijk, Ingmar
Doerich-Stavridis, Cornelia
Fajuyitan, Oluwole Kunle
Filippidis, Achilleas
Fischer, Astrid Winther
Fischer, Claas
Gerasimidis, Simos
Karampour, Hassan
Kathirkamanathan, Lijithan
Marten, Frithjof
Mihara, Yasuko
Mishra, Shashank
Sakharov, Volodymyr
Shahini, Amela
Subramanian, Saravanan
Topkaya, Cem
Wagner, Heinz Norbert Ronald
Wang, Jianze
Wang, Jie
Yadav, Kshitij Kumar
Yun, Xiang
Zhang, Pan
An assessment of the elastic-plastic buckling limit state for multi-strake wind turbine support towers poses a particular challenge for the modern finite element analyst, who must competently navigate numerous modelling choices related to the tug-of-war between meshing and computational cost, the use of solvers that are robust to highly nonlinear behaviour, the potential for multiple near-simultaneously critical failure locations, the complex issue of imperfection sensitivity and finally the interpretation of the data into a safe and economic design. This paper reports on an international ‘round-robin’ exercise conducted in 2022 aiming to take stock of the computational shell buckling expertise around the world which attracted 29 submissions. Participants were asked to perform analyses of increasing complexity on a standardised benchmark of an 8-MW multi-strake steel wind turbine support tower segment, from a linear elastic stress analysis to a linear bifurcation analysis to a geometrically and materially nonlinear buckling analysis with imperfections. The results are a showcase of the significant shell buckling expertise now available in both industry and academia. This paper is the first of a pair. The second paper presents a detailed reference solution to the benchmark, including an illustration of the Eurocode-compliant calibration of two important imperfection forms.
Engineering Failure Analysis

Suggestions

Performance Evaluation of the Numerical Flux Jacobians in Flow Solution and Aerodynamic Design Optimization
Ezertas, Alper; Eyi, Sinan (2010-07-16)
A direct sparse matrix solver is utilized for the flow solution and the analytical sensitivity analysis. The effects of the accuracy of the numerical Jacobians on the accuracy of sensitivity analysis and on the performance of the Newton's method flow solver are analyzed in detail. The gradient based aerodynamic design optimization is employed to demonstrate those effects.
Nonlinear Finite Element Analysis Versus Ex Vivo Strain Gauge Measurements on Immediately Loaded Implants
Eser, Atilim; AKÇA, KIVANÇ; Eckert, Steven; Cehreli, Murat Cavit (2009-05-01)
Purpose: To evaluate the level of agreement between nonlinear finite element stress analysis (NL-FEA) and ex vivo strain gauge analysis (EV-SGA) on immediately loaded implants. Materials and Methods: Four 4.1-mm-diameter, 12-mm-long implants were placed bilaterally into the lateral and first premolar regions of completely edentulous maxillae of four human cadavers. Two-element 90-degree rosette strain gauges were bonded to the labial cortical bone around the implants, and 100 N maximal load was applied over...
Failure analysis of tapered composite structures under tensile loading
Çelik, Ozan; Parnas, Kemal Levend; Department of Mechanical Engineering (2016)
A three dimensional finite element modeling approach is used to evaluate the effects of preliminary design variables on the performance of tapered composite laminates under tensile loading. Hashin failure criteria combined with a progressive failure algorithm is used for in-plane failure mechanisms and cohesive zone method is used for out-of-plane failures. The modeling approach is validated by a comparison with experimental results from literature. The validated model is used to examine various design vari...
Linear static analysis of large structural models on pc clusters
Özmen, Semih; Toker, Kurç; Department of Civil Engineering (2009)
This research focuses on implementing and improving a parallel solution framework for the linear static analysis of large structural models on PC clusters. The framework consists of two separate programs where the first one is responsible from preparing data for the parallel solution that involves partitioning, workload balancing, and equation numbering. The second program is a fully parallel nite element program that utilizes substructure based solution approach with direct solvers. The first step of data...
Dynamic characteristics and performance assessment of reinforced concrete structural walls
Kazaz, İlker; Gülkan, Polat; Department of Civil Engineering (2010)
The analytical tools used in displacement based design and assessment procedures require accurate strain limits to define the performance levels. Additionally, recently proposed changes to modeling and acceptance criteria in seismic regulations for both flexure and shear dominated reinforced concrete structural walls proves that a comprehensive study is required for improved limit state definitions and their corresponding values. This is due to limitations in the experimental setups, such that most previous...
Citation Formats
A. J. Sadowski et al., “8-MW wind turbine tower computational shell buckling benchmark. Part 1: An international ‘round-robin’ exercise,” Engineering Failure Analysis, vol. 148, pp. 0–0, 2023, Accessed: 00, 2023. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85150292508&origin=inward.