Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Biobjective UAV routing for a mission to visit multiple mobile targets
Date
2023-01-01
Author
Karabay, Nail
Köksalan, Mustafa Murat
TEZCANER ÖZTÜRK, DİCLEHAN
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
143
views
0
downloads
Cite This
We address the route planning problem of an unmanned air vehicle (UAV) that operates in a two-dimensional hostile terrain monitored with radars. In this terrain, there are a number of targets that are planned to be visited to collect intelligence. We consider a setting where a UAV starts from a base, visits the targets, and returns to the base. Targets may move during the UAV’s mission and their movement directions are unpredictable in advance. We consider two objectives: to minimize distance and to minimize radar detection threat. These objectives are conflicting in the regions monitored by radars. The constructed routes comprise the visiting order to the targets and the trajectories used between the visited pairs of targets. There are many efficient trajectories between the target pairs and many efficient visiting orders of the targets due to the two conflicting objectives. As a result, there are many efficient routes that are combinations of efficient trajectories and efficient orders of visits. Due to the dynamic nature of the problem, there is a need to select the route to follow in real time. To respond to these challenges, we develop an algorithm that finds a preferred route of a route planner (RP) quickly. We characterize the efficient trajectories between target pairs approximately and utilize the RP’s preferences to choose the preferred efficient trajectories and to construct a preferred route. During the flight of the UAV, targets keep moving. We update the route every time the UAV reaches a new target. We also develop a heuristic approach in case the problem needs to be solved faster. We demonstrate our algorithms on 5, 9, and 15-target problems.
Subject Keywords
Continuous space
,
Multiobjective optimization
,
Real-time routing
,
Unmanned air vehicles
URI
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85152436973&origin=inward
https://hdl.handle.net/11511/103002
Journal
OR Spectrum
DOI
https://doi.org/10.1007/s00291-023-00715-1
Collections
Department of Industrial Engineering, Article
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
N. Karabay, M. M. Köksalan, and D. TEZCANER ÖZTÜRK, “Biobjective UAV routing for a mission to visit multiple mobile targets,”
OR Spectrum
, pp. 0–0, 2023, Accessed: 00, 2023. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85152436973&origin=inward.