An empirical model for the prediction of cloud height

2024-02-01
At high solids concentrations (>2 vol%), a clear interface appears between solid-rich and liquid-rich parts of a solid-liquid mixing tank. The height of this interface is known as cloud height. The cloud height is one of the key design parameters; therefore, accurate prediction of it plays a critical role in the design of solid-liquid mixing tanks. This study proposes an empirical model that predicts cloud height as a function of particle properties, solids concentration (XV), off-bottom clearance, and impeller speed. Experiments were performed in a tall tank (H=1.5 T) agitated with a 45° down-pumping PBT. The model was tested against two independent data sets. It successfully predicts the cloud height for XV between 2 to 8 vol% and off-bottom clearance between T/6 to T/3. The size and the density of the particles were varied between 123 to 712 µm and 2500 to 7600 kg/m3, respectively. A modified version of the model was also proposed for high solids concentrations.
Chemical Engineering Research and Design
Citation Formats
E. Altıntaş and İ. Ayrancı Tansık, “An empirical model for the prediction of cloud height,” Chemical Engineering Research and Design, vol. 202, pp. 327–335, 2024, Accessed: 00, 2024. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85182406905&origin=inward.