Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Nanoparticle-Assisted Liquid Crystal Droplet Sensors Enable Analysis of Low-Concentration Species in Aqueous Medium
Date
2024-02-13
Author
Sezer, Selda
Büküşoğlu, Emre
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
79
views
0
downloads
Cite This
We introduce nanoparticle-assisted liquid crystal (LC) droplet-based sensors that allow determination of low-level concentrations of aqueous soluble species. The silica nanoparticles functionalized with mixed monolayers composed of two distinct groups, hydrophobic alkane tail- and charged group-terminated silanes, facilitated ternary physical interactions between the model analytes (methylene blue (MB) or methyl orange (MO)) and the nematic mesogens 5CB (4-cyano-4′-pentylbiphenyl), and the interfacial species of the nanoparticle. The response of the LC droplets was measured upon nanoparticle adsorption as a function of analyte concentration, which was characterized by the optical determination of the configuration distributions of the LC droplets. We highlight the importance of the charging and the composition of the nanoparticle interfaces for analytical purposes that allow accurate determination of the concentration of the analytes on the order of 0.01 ppb. Such a low concentration corresponds to a low interfacial coverage of nanoparticles, indicating the promisingly high sensitivity of the sensor platform to target analytes. Distinct from the past examples of the LC-based sensors, the nanoparticle-assisted LC sensors allow detection of the species that do not directly cause an ordering transition at the LC-water interfaces, which allow a broader range of analytical targets. The sensor platform that we report herein can be easily tunable for a range of target molecules and will find use in the determination of a wide range of micropollutants in aqueous environments.
URI
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85184810892&origin=inward
https://hdl.handle.net/11511/108989
Journal
Langmuir
DOI
https://doi.org/10.1021/acs.langmuir.3c03598
Collections
Department of Chemical Engineering, Article
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Sezer and E. Büküşoğlu, “Nanoparticle-Assisted Liquid Crystal Droplet Sensors Enable Analysis of Low-Concentration Species in Aqueous Medium,”
Langmuir
, vol. 40, no. 6, pp. 3154–3167, 2024, Accessed: 00, 2024. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85184810892&origin=inward.