Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Optically responsive dry cholesteric liquid crystal marbles
Date
2024-10-01
Author
Kocaman, Ceren
Batır, Özge
Büküşoğlu, Emre
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
231
views
0
downloads
Cite This
Dry liquid crystal marbles are structures that consist of cholesteric liquid crystal (CLC) droplets prepared by the mixture of chiral-doped thermotropic LCs encapsulated by cellulose nanocrystals (CNCs) that have been dried under ambient conditions. The characterizations revealed that CLC droplets were successfully encapsulated by self-standing CNC shells and responsive to the external gaseous stimulus. The dry LC marbles offer several advantages over previously reported LC-based gas sensors, such as fast response against minor external stimuli, and ease of handling, which make them particularly attractive for practical applications in sensing. We demonstrate the use of these marbles for detecting toluene vapor, a common industrial solvent and pollutant, which we also use to understand the response characteristics. The dry CLC marbles exhibit a significant response to toluene vapor with a detection limit below 500 ppm, attributed to the change of pitch size of the helical structure of CLC droplets induced by the toluene vapor. The CNC-capsulated CLC droplets were stable in emulsion for up to two weeks, and their dried form exhibited a sensitive response upon toluene exposure. The real-time experiments revealed that the LC marbles can be used multiple times without a significant loss of sensitivity, where 90 % of the maximum response was observed at 13.3 ± 4.7 s. These dry LC marbles can also be utilized in other areas, including drug delivery, optical devices, and biosensors.
Subject Keywords
Cellulose nanocrystals
,
Cholesteric liquid crystal
,
Encapsulation
,
Responsive materials
URI
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85194295102&origin=inward
https://hdl.handle.net/11511/110001
Journal
Journal of Colloid and Interface Science
DOI
https://doi.org/10.1016/j.jcis.2024.05.194
Collections
Department of Chemical Engineering, Article
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
C. Kocaman, Ö. Batır, and E. Büküşoğlu, “Optically responsive dry cholesteric liquid crystal marbles,”
Journal of Colloid and Interface Science
, vol. 671, pp. 374–384, 2024, Accessed: 00, 2024. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85194295102&origin=inward.