Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Analyzing Pulse Compression Performance and Image Quality Metrics of Different Excitations in MAET With Magnetic Field Measurements
Date
2024-12-01
Author
Gözü, Mehmet Soner
Gençer, Nevzat Güneri
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
27
views
0
downloads
Cite This
This study investigates the pulse compression technique to improve the performance of magneto-acousto-electrical tomography (MAET) with magnetic field measurements through numerical studies. Emphasizing the effects of specific coil configuration on MAET measurements, the study conducts evaluations using a linear phased array (LPA) transducer and numerical breast models with tumor inclusion. It provides feasibility and a detailed comparative analysis of various excitations, including linear frequency modulated (LFM), Barker code, and Golay code excitations in MAET. To simulate experimental conditions, additive White Gaussian noise is added to the MAET signal detected by the receiver coils. The results obtained from the LPA steering angle at 0° and the reconstructed B-mode MAET images using the pulse compression technique lead to improvements compared with conventional single-cycle excitation. The computed mean signal-to-noise ratio (SNR) improvements for LFM, Barker code, and Golay code excitations in B-mode MAET images for 10,000 iterations are 7.42, 8.36, and 8.44 dB, respectively, compared with single-cycle excitation. Similarly, the mean contrast-to-noise ratio (CNR) improvements for these excitations in B-mode MAET images are 1.43, 1.63, and 1.9 dB, respectively. The results demonstrate that Golay code is superior in CNR and image quality metrics, while Golay and Barker codes have comparable SNR and outperform LFM. The research shows that the coil configuration significantly impacts tumor detection. With Golay code excitation, detecting a tumor as small as 5 mm × 2 mm at a depth of 33 mm with an SNR of 6.38 dB is possible, achieving an axial resolution of 2 mm.
Subject Keywords
coded excitation
,
conductivity imaging
,
magneto-acousto-electrical tomography
,
pulse compression
URI
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85209124802&origin=inward
https://hdl.handle.net/11511/112825
Journal
International Journal for Numerical Methods in Biomedical Engineering
DOI
https://doi.org/10.1002/cnm.3890
Collections
Department of Electrical and Electronics Engineering, Article
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. S. Gözü and N. G. Gençer, “Analyzing Pulse Compression Performance and Image Quality Metrics of Different Excitations in MAET With Magnetic Field Measurements,”
International Journal for Numerical Methods in Biomedical Engineering
, vol. 40, no. 12, pp. 0–0, 2024, Accessed: 00, 2024. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85209124802&origin=inward.