Distributed energy management and communication strategy for network of microgrids

2025-01-01
Sezgin, Mustafa Erdem
Göl, Murat
The increasing integration of renewables, battery storage, and electric vehicles is leading communities to operate as microgrids within distribution networks. Managing multiple microgrids as a network of microgrids enhances benefits of individual microgrids. Although there are different approaches for energy management system of network of microgrids in the literature, this work presents a distributed communication approach for the energy management of network of microgrids by considering that each microgrid has a communication network with a limited number of participants, i.e., the communication network of each microgrid does not cover all other microgrids. The proposed method is compared to the centralized approach. In the test cases, the collective operational cost of microgrids are reduced from 1070$ to 54$, which corresponds to a cost reduction 93% of that achieved by the centralized approach. The results show that the proposed method can serve as an alternative to the centralized version considering investment costs and resilience. A simulation test case illustrates the indirect communication between two microgrids through a common neighbouring microgrid. Despite performing well, the proposed approach cannot surpass the centralized energy management system as expected. Furthermore, a scenario featuring an undesirable power transfer route is presented as a limitation case.
Electric Power Systems Research
Citation Formats
M. E. Sezgin and M. Göl, “Distributed energy management and communication strategy for network of microgrids,” Electric Power Systems Research, vol. 238, pp. 0–0, 2025, Accessed: 00, 2025. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85204458721&origin=inward.