Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Oscillation of second order impulsive differential equation
Download
116283.pdf
Date
2001
Author
Saryal, Fatma Sönmez
Metadata
Show full item record
Item Usage Stats
78
views
0
downloads
Cite This
URI
https://hdl.handle.net/11511/12377
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Oscillation of Second-Order Sublinear Impulsive Differential Equations
Zafer, A. (Hindawi Limited, 2011)
Oscillation criteria obtained by Kusano and Onose (1973) and by Belohorec (1969) are extended to second-order sublinear impulsive differential equations of Emden-Fowler type: x ''(t) + p(t)vertical bar x(tau(t))vertical bar(alpha-1)x(tau(t)) = 0, t not equal theta(k); Delta x'(t)vertical bar(t=theta k) + q(k)vertical bar x(tau(theta(k)))vertical bar(alpha-1)x(tau(theta(k))) = 0; Delta x(t)vertical bar(t=theta k) = 0, (0 < alpha < 1) by considering the cases tau(t) <= t and tau(t) = t, respectively. Examples...
Oscillation of functional differential equations
Yılmaz(Şahiner), Yeter; Zafer, Ağacık; Department of Mathematics (2000)
Oscillation of higher order neutral type difference equations
Zafer, Ağacık (1995-08-11)
In this work we are concerned with oscillation of solutions of the neutral difference equation of the form
Oscillation of Second-Order Mixed-Nonlinear Delay Dynamic Equations
Unal, M.; Zafer, Ağacık (Springer Science and Business Media LLC, 2010-01-01)
New oscillation criteria are established for second-order mixed-nonlinear delay dynamic equations on time scales by utilizing an interval averaging technique. No restriction is imposed on the coefficient functions and the forcing term to be nonnegative.
Oscillation of fourth-order nonlinear neutral delay dynamic equations
Grace, S. R.; Zafer, Ağacık (2015-04-01)
In this work we establish some new sufficient conditions for oscillation of fourth-order nonlinear neutral delay dynamic equations of the form (a(t)([x(t) - p(t) x(h(t))](Delta Delta Delta))(alpha))(Delta) + q(t)x(beta)(g(t)) = 0, t is an element of [t(0),infinity) T, where alpha and beta are quotients of positive odd integers with beta <= alpha.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
F. S. Saryal, “Oscillation of second order impulsive differential equation,” Middle East Technical University, 2001.