Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Oscillation of fourth-order nonlinear neutral delay dynamic equations
Date
2015-04-01
Author
Grace, S. R.
Zafer, Ağacık
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
204
views
0
downloads
Cite This
In this work we establish some new sufficient conditions for oscillation of fourth-order nonlinear neutral delay dynamic equations of the form (a(t)([x(t) - p(t) x(h(t))](Delta Delta Delta))(alpha))(Delta) + q(t)x(beta)(g(t)) = 0, t is an element of [t(0),infinity) T, where alpha and beta are quotients of positive odd integers with beta <= alpha.
Subject Keywords
Oscillation
,
Neutral
,
Time scales
,
Fourth-order
URI
https://hdl.handle.net/11511/55038
Journal
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS
Collections
Department of Mathematics, Article
Suggestions
OpenMETU
Core
Oscillation of higher order nonlinear dynamic equations on time scales
Grace, Said R; Agarwal, Ravi P; Zafer, Ağacık (Springer Science and Business Media LLC, 2012-5-23)
Some new criteria for the oscillation of nth order nonlinear dynamic equations of the form x(Delta n) (t) + q (t) (x(sigma) (xi (t)))(lambda) = 0 are established in delay xi(t) a parts per thousand currency sign t and non-delay xi(t) = t cases, where n a parts per thousand yen 2 is a positive integer, lambda is the ratio of positive odd integers. Many of the results are new for the corresponding higher order difference equations and differential equations are as special cases.
Oscillation criteria for even order neutral differential equations
Zafer, Ağacık (1998-05-01)
Oscillation criteria are given for even order neutral type differential equations of the following form
Oscillation of third-order nonlinear delay difference equations
AKTAŞ, MUSTAFA FAHRİ; Tiryaki, Aydin; Zafer, Ağacık (2012-01-01)
Third-order nonlinear difference equations of the form Delta(c(n)Delta(d(n)Delta x(n))) p(n)Delta x(n+1) + q(n)f (x(n-sigma)) = n >= n(0) are considered. Here, {c(n)}, {d(n)}, {p(n)} and {q(n)} are sequences of positive real numbers for n(0) is an element of N, f is a continuous function such that f(u)/u >= K > 0 for u not equal 0. By means of a Riccati transformation technique we obtain some new oscillation criteria. Examples are given to illustrate the importance of the results.
Oscillatory behavior of integro-dynamic and integral equations on time scales
Grace, S. R.; Zafer, Ağacık (2014-02-01)
By making use of asymptotic properties of nonoscillatory solutions, the oscillation behavior of solutions for the integro-dynamic equation
Oscillation criteria for third-order nonlinear functional differential equations
AKTAŞ, MUSTAFA FAHRİ; Tiryaki, A.; Zafer, Ağacık (Elsevier BV, 2010-07-01)
In this work, we are concerned with oscillation of third-order nonlinear functional differential equations of the form
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. R. Grace and A. Zafer, “Oscillation of fourth-order nonlinear neutral delay dynamic equations,”
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS
, pp. 331–339, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/55038.