Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Generalization of the law of the wall.
Download
119397.pdf
Date
2002
Author
Köken, Mete
Metadata
Show full item record
Item Usage Stats
135
views
0
downloads
Cite This
In this study the classical law of the wall, which is obtained for the flat plate, is generalized such that it will hold true for the turbulent axisymmetrical flow as well. A turbulent boundary layer on a transversly curved surface has a different structure from that of a flat plate boundary layer. This transverse curvature effect is of importance in computations of the boundary layer near the tail of a body of revolution^ in estimating the surface resistance of ship models, or other three- dimensional elongated bodies. Classical law of the wall expressions do not hold true for these cases. A new logarithmic mixing length* which takes into consideration the effect of transverse curvature on turbulance, is proposed in the law of the wall region. Making use of the Navier-Stokes Equations and the new mixing length model the generalized law of the wall expressions are obtained. Obtained expressions are verified for the various velpcity profile data.
Subject Keywords
Law of the wall
,
Axisymmetrical flow
,
Transverse curvature
,
Turbulence
URI
https://hdl.handle.net/11511/12743
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Analysis of RC walls with a mixed formulation frame finite element
Sarıtaş, Afşin (2013-10-01)
This paper presents a mixed formulation frame element with the assumptions of the Timoshenko shear beam theory for displacement field and that accounts for interaction between shear and normal stress at material level. Nonlinear response of the element is obtained by integration of section response, which in turn is obtained by integration of material response. Satisfaction of transverse equilibrium equations at section includes the interaction between concrete and transverse reinforcing steel. A 3d plastic...
Exact and FDM solutions of 1D MHD flow between parallel electrically conducting and slipping plates
Arslan, Sinem; Tezer, Münevver (Springer Science and Business Media LLC, 2019-08-01)
In this study, the steady, laminar, and fully developed magnetohydrodynamic (MHD) flow is considered in a long channel along with the z-axis under an external magnetic field which is perpendicular to the channel axis. The fluid velocity u and the induced magnetic field b depend on the plane coordinates x and y on the cross-section of the channel. When the lateral channel walls are extended to infinity, the problem turns out to be MHD flow between two parallel plates (Hartmann flow). Now, the variations of u...
Optimum characteristic properties of isolators with bilinear force-displacement hysteresis for seismic protection of bridges built on various site soils
Dicleli, Murat (Elsevier BV, 2011-07-01)
In this study, closed form equations as functions of the isolator, bridge and ground motion properties are formulated to calculate the optimum characteristic strength, Q(d) and post-elastic stiffness, k(d), of the isolator to minimize the maximum isolator displacement (MID) and force (MIF) for seismic isolated bridges (SIBS). For this purpose, first, sensitivity analyses are conducted to identify the bridge, isolator and ground motion parameters that affect the optimum values of Q(d) and k(d). Next, for the...
Nonlinear free vibration of double walled carbon nanotubes by using describing function method with multiple trial functions
Ciğeroğlu, Ender (2012-09-01)
In this paper, nonlinear free vibration of double walled carbon nanotubes (DWCNTs) embedded in an elastic medium with geometric nonlinearity and interlayer van der Waals force nonlinearity are studied. The motion of the DWCNT is represented by multiple eigenfunctions of the linear system which are referred as trial functions. Describing function method (DFM) is employed in order to represent the nonlinear forces as a multiplication of a nonlinear stiffness matrix and a displacement vector, which made it pos...
Direct numerical simulation of pipe flow using a solenoidal spectral method
Tugluk, Ozan; Tarman, Işık Hakan (2012-05-01)
In this study, a numerical method based on solenoidal basis functions, for the simulation of incompressible flow through a circular-cylindrical pipe, is presented. The solenoidal bases utilized in the study are formulated using the Legendre polynomials. Legendre polynomials are favorable, both for the form of the basis functions and for the inner product integrals arising from the Galerkin-type projection used. The projection is performed onto the dual solenoidal bases, eliminating the pressure variable, si...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Köken, “Generalization of the law of the wall.,” Middle East Technical University, 2002.