Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Optimum characteristic properties of isolators with bilinear force-displacement hysteresis for seismic protection of bridges built on various site soils
Date
2011-07-01
Author
Dicleli, Murat
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
225
views
0
downloads
Cite This
In this study, closed form equations as functions of the isolator, bridge and ground motion properties are formulated to calculate the optimum characteristic strength, Q(d) and post-elastic stiffness, k(d), of the isolator to minimize the maximum isolator displacement (MID) and force (MIF) for seismic isolated bridges (SIBS). For this purpose, first, sensitivity analyses are conducted to identify the bridge, isolator and ground motion parameters that affect the optimum values of Q(d) and k(d). Next, for the identified parameters, nonlinear time history analyses of typical SIBs are conducted to determine the optimum values of Q(d) and k(d) for a wide range of values of the parameters. Next, nonlinear regression analyses of the available data are conducted to obtain closed form equations for the optimum values of Q(d) and k(d), to minimize the MID and MIF. The equations are then simplified for various site soil conditions. It is observed that the optimum Q(d) and k(d) are highly dependent on the site soil condition. Furthermore, the optimum Q(d) is found to be a linear function of the peak ground acceleration.
Subject Keywords
Geotechnical Engineering and Engineering Geology
,
Soil Science
,
Civil and Structural Engineering
URI
https://hdl.handle.net/11511/36634
Journal
SOIL DYNAMICS AND EARTHQUAKE ENGINEERING
DOI
https://doi.org/10.1016/j.soildyn.2011.03.005
Collections
Department of Engineering Sciences, Article
Suggestions
OpenMETU
Core
Optimum Properties of Seismic Isolation Systems in Highway Bridges to Minimize Isolator Displacements or Substructure Forces
Dicleli, Murat (null; 2019-07-06)
In this study, closed form equations as functions of the isolator, bridge and ground motion properties are formulated to calculate the optimum characteristic strength, Qd and post-elastic stiffness, kd, of the isolator to minimize the maximum isolator displacement (MID) and force (MIF) for seismic isolated bridges (SIBs). For this purpose, first, sensitivity analyses are conducted to identify the bridge, isolator and ground motion parameters that affect the optimum values of Qd and kd. Next, for the identif...
Spatial sensitivity of seismic hazard results to different background seismic activity and temporal earthquake occurrence models
Yilmaz, Nazan; Yücemen, Mehmet Semih (Elsevier BV, 2011-07-01)
Spatial sensitivity of seismic hazard results to different models with respect to background seismic activity and earthquake occurrence in time is investigated. For the contribution of background seismic activity to seismic hazard, background area source with uniform seismicity and spatially smoothed seismicity models are taken into consideration. For the contribution of faults, through characteristic earthquakes, both the memoryless Poisson and the time dependent renewal models are utilized. A case study, ...
Optimum design of seismic isolation systems using metaheuristic search methods
ÇERÇEVİK, ALİ ERDEM; Avsar, Ozgur; Hasançebi, Oğuzhan (Elsevier BV, 2020-04-01)
This study addresses the optimum design of seismic isolated structures via metaheuristic search methods. Three recently developed bio-inspired search methods, namely crow search (CSA), whale optimization (WOA) and grey wolf optimizer (GWO), were employed to develop efficient design optimization algorithms for parameter optimization of seismic isolated structures. The developed design optimization algorithms have been applied to optimize a shear frame model with a base isolation system, where the main object...
Live load distribution equations for integral bridge substructures
Erhan, Semih; Dicleli, Murat (Elsevier BV, 2009-05-01)
In this study, live load distribution equations (LLDEs) for integral bridge (IB) substructures are developed. For this purpose, numerous 3-D and corresponding 2-D structural models of typical IBs are built and analyzed under AASHTO live load. In the analyses, the effect of various superstructure and substructure properties such as span length, girder spacing, girder stiffness, abutment height, pile size, pile spacing and foundation soil stiffness are considered. The results from the 2-D and 3-D analyses are...
Estimation of optimum isolator parameters for effective mitigation of seismic risk for bridges
Karalar, M.; Dicleli, Murat (2010-07-15)
In this study, closed form equations as functions of the isolator, bridge and ground motion properties are formulated to calculate the optimum characteristic strength, Q(d) and post-elastic stiffness, k(d), of the isolator to minimize the maximum isolator displacement (MID) and force (MIF) for seismic isolated bridges (SIBs). This formulation required more than 13000 nonlinear time history analyses of simplified SIB models. The analyses results revealed that the optimum Qd and kd are highly dependent on the...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Dicleli, “Optimum characteristic properties of isolators with bilinear force-displacement hysteresis for seismic protection of bridges built on various site soils,”
SOIL DYNAMICS AND EARTHQUAKE ENGINEERING
, pp. 982–995, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/36634.