System parameter adaptation based on image metrics for automatic target detection

Kürekli, Kenan
Automatic object detection is a challenging field which has been evolving over decades. The application areas span many domains such as robotics inspection, medical imaging, military targeting, and reconnaissance. Some of the most concentrated efforts in automatic object detection have been in the military domain, where most of the problems deal with automatic target detection and scene analysis in the outdoors using a variety of sensors. One of the critical problems in Automatic Target Detection (ATD) systems is multiscenario adaptation. Most of the ATD systems developed until today perform unpredictably i.e. perform well in certain scenarios, and poorly in others. Unless ATD systems can be made adaptable, their utility in battlefield missions remains questionable. This thesis describes a methodology that adapts parameterized ATD systems with image metrics as the scenario changes so that ATD system can maintain better performance. The methodology uses experimentally obtained performance models, which are functions of image metrics and system parameters, to optimize performance measures of the ATD system. Optimization is achieved by adapting system parameters with incoming image metrics based on performance models as the system works in field. A simple ATD system is also proposed in this work to describe and test the methodology.


Signal reconstruction from nonuniform samples
Serdaroğlu, Bülent; Tuncer, Temel Engin; Department of Electrical and Electronics Engineering (2005)
Sampling and reconstruction is used as a fundamental signal processing operation since the history of signal theory. Classically uniform sampling is treated so that the resulting mathematics is simple. However there are various instances that nonuniform sampling and reconstruction of signals from their nonuniform samples are required. There exist two broad classes of reconstruction methods. They are the reconstruction according to a deterministic, and according to a stochastic model. In this thesis, the mos...
Multi-scan data association algorithm for multitarget tracking
Ağırnas, Emre; Demirbaş, Kerim; Department of Electrical and Electronics Engineering (2004)
Data association problem for multitarget tracking is determination of the relationship between targets and the incoming measurements from sensors of the target tracking system. Performance of a multitarget tracking system is strongly related to the chosen method for data association and target tracking algorithm. Incorrect data association effects state estimation of targets. In this thesis, we propose a new multi-scan data association algorithm for multitarget tracking systems. This algorithm was implement...
Use of the ambiguity function technique for target detection in phase coded continuous wave radars
Çankaya, Erkan; Sayan, Gönül; Department of Electrical and Electronics Engineering (2005)
The goal of this thesis study is to investigate the Ambiguity Function Technique for target detection in phase-coded continuous wave radar. Also, phase shift keying techniques are examined in detail. Continuous Wave (CW) Radars, which are also known as Low Probability of Intercept (LPI) radars, emit continuous signals in time which are modulated by either frequency modulation or phase modulation techniques. Modulation of the transmitted radar signal is needed to estimate both the range and the radial veloci...
Target tracking with input estimation
Gazioğlu, Ersen; Demirbaş, Kerim; Department of Electrical and Electronics Engineering (2005)
In this thesis, the target tracking problem with input estimation is investigated. The estimation performance of the optimum decoding based smoothing algorithm and a target tracking scheme based on the Kalman filter is compared by performing simulations. The advantages and the disadvantages of these algorithms are presented.
Performance optimization of monopulse tracking radar
Şahin, Mehmet Alper; Leblebicioğlu, Mehmet Kemal; Department of Electrical and Electronics Engineering (2004)
An analysis and simulation tool is developed for optimizing system parameters of the monopulse target tracking radar and observing effects of the system parameters on the performance of the system over different scenarios. A monopulse tracking radar is modeled for measuring the performance of the radar with given parameters, during the thesis studies. The radar model simulates the operation of a Class IA type monopulse automatic tracking radar, which uses a planar phased array. The interacting multiple mode...
Citation Formats
K. Kürekli, “System parameter adaptation based on image metrics for automatic target detection,” M.S. - Master of Science, Middle East Technical University, 2004.