On the expected value of the linear complexity of periodic sequences

Özakın, Çiğdem
In cryptography, periodic sequences with terms in F2 are used almost everywhere. These sequences should have large linear complexity to be cryptographically strong. In fact, the linear complexity of a sequence should be close to its period. In this thesis, we study the expected value for N-periodic sequences with terms in the finite field Fq. This study is entirely devoted to W. Meidl and Harald Niederreiter̕s paper which is أOn the Expected Value of the Linear Complexity and the k-Error Linear Complexity of Periodic Sequencesؤ We only expand this paper, there is no improvement. In this paper there are important theorems and results about the expected value of linear complexity of periodic sequences.


On a Fitting length conjecture without the coprimeness condition
Ercan, Gülin (Springer Science and Business Media LLC, 2012-08-01)
Let A be a finite nilpotent group acting fixed point freely by automorphisms on the finite solvable group G. It is conjectured that the Fitting length of G is bounded by the number of primes dividing the order of A, counted with multiplicities. The main result of this paper shows that the conjecture is true in the case where A is cyclic of order p (n) q, for prime numbers p and q coprime to 6 and G has abelian Sylow 2-subgroups.
Constructions of bent functions
Sulak, Fatih; Doğanaksoy, Ali; Department of Cryptography (2006)
In cryptography especially in block cipher design, Boolean functions are the basic elements. A cryptographic function should have high nonlinearity as it can be attacked by linear attack. In this thesis the highest possible nonlinear boolean functions in the even dimension, that is bent functions, basic properties and construction methods of bent functions are studied. Also normal bent functions and generalized bent functions are presented.
On quasi-compactness of operator nets on Banach spaces
Emelyanov, Eduard (Institute of Mathematics, Polish Academy of Sciences, 2011-01-01)
The paper introduces a notion of quasi-compact operator net on a Banach space. It is proved that quasi-compactness of a uniform Lotz-Rabiger net (T(lambda))(lambda) is equivalent to quasi-compactness of some operator T(lambda). We prove that strong convergence of a quasi-compact uniform Lotz-Rabiger net implies uniform convergence to a finite-rank projection. Precompactness of operator nets is also investigated.
KIRLAR, Barış Bülent; Cil, Melek (Walter de Gruyter GmbH, 2017-06-01)
In this paper, we propose a novel encryption scheme based on the concepts of the commutative law of the k-th order linear recurrences over the finite field F-q for k > 2. The proposed encryption scheme is an ephemeral-static, which is useful in situations like email where the recipient may not be online. The security of the proposed encryption scheme depends on the difficulty of solving some Linear Feedback Shift Register (LFSR) problems. It has also the property of semantic security. For k = 2, we propose ...
Noncomplex smooth 4-manifolds with Lefschetz fibrations
Korkmaz, Mustafa (2001-01-01)
For every integer g ≥ 2 there exist infinitely many pairwise nonhomeomorphic smooth 4-manifolds admitting genus-g Lefschetz fibration over S2 but not carrying any complex structure. This extends a recent result of Ozbagci and Stipsicz.
Citation Formats
Ç. Özakın, “On the expected value of the linear complexity of periodic sequences,” M.S. - Master of Science, Middle East Technical University, 2004.